磁铁矿-镁铁素体固溶体的可压缩性

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
C. Melai, T. Boffa Ballaran, L. Uenver-Thiele, A. Kurnosov, A. I. Chumakov, D. Bessas, D. J. Frost
{"title":"磁铁矿-镁铁素体固溶体的可压缩性","authors":"C. Melai,&nbsp;T. Boffa Ballaran,&nbsp;L. Uenver-Thiele,&nbsp;A. Kurnosov,&nbsp;A. I. Chumakov,&nbsp;D. Bessas,&nbsp;D. J. Frost","doi":"10.1007/s00269-022-01217-2","DOIUrl":null,"url":null,"abstract":"<div><p>To calculate the thermodynamic properties of recently discovered high-pressure mixed valence iron oxides in the system Fe–Mg–O, information on the equation of state of precursor inverse spinel phases along the magnetite–magnesioferrite join is needed. The existing equation of state data, particularly for magnesioferrite, are in poor agreement and no data exist for intermediate compositions. In this study, the compressibility of nearly pure magnesioferrite as well as of an intermediate <span>\\({{\\mathrm{Mg}}_{0.5}}^{\\vphantom{2+}}\\mathrm{Fe}_{0.5}^{2+}{\\mathrm{Fe}}_{2}^{3+}{\\mathrm{O}}_{4}^{\\vphantom{2+}}\\)</span> sample have been investigated for the first time up to approximately 19 and 13 GPa, respectively, using single-crystal X-ray diffraction in a diamond anvil cell. Samples were produced in high-pressure synthesis experiments to promote a high level of cation ordering, with the obtained inversion parameters larger than 0.83. The room pressure unit cell volumes, <i>V</i><sub>0</sub>, and bulk moduli, <i>K</i><sub><i>T</i>0</sub>, could be adequately constrained using a second-order Birch–Murnaghan equation of state, which yields <i>V</i><sub>0</sub> = 588.97 (8) Å<sup>3</sup> and <i>K</i><sub><i>T</i>0</sub> = 178.4 (5) GPa for magnesioferrite and <i>V</i><sub>0</sub> = 590.21 (5) Å<sup>3</sup> and <i>K</i><sub><i>T</i>0</sub> = 188.0 (6) GPa for the intermediate composition. As magnetite has <i>K</i><sub><i>T</i>0</sub> = 180 (1) GPa (Gatta et al. in Phys Chem Min 34:627–635, 2007. https://doi.org/10.1007/s00269-007-0177-3), this means the variation in <i>K</i><sub><i>T</i>0</sub> across the magnetite–magnesioferrite solid solution is significantly non-linear, in contrast to several other Fe–Mg spinels. The larger incompressibility of the intermediate composition compared to the two end-members may be a peculiarity of the magnetite–magnesioferrite solid solution caused by an interruption of Fe<sup>2+</sup>–Fe<sup>3+</sup> electron hopping by Mg cations substituting in the octahedral site.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01217-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Compressibilities along the magnetite–magnesioferrite solid solution\",\"authors\":\"C. Melai,&nbsp;T. Boffa Ballaran,&nbsp;L. Uenver-Thiele,&nbsp;A. Kurnosov,&nbsp;A. I. Chumakov,&nbsp;D. Bessas,&nbsp;D. J. Frost\",\"doi\":\"10.1007/s00269-022-01217-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To calculate the thermodynamic properties of recently discovered high-pressure mixed valence iron oxides in the system Fe–Mg–O, information on the equation of state of precursor inverse spinel phases along the magnetite–magnesioferrite join is needed. The existing equation of state data, particularly for magnesioferrite, are in poor agreement and no data exist for intermediate compositions. In this study, the compressibility of nearly pure magnesioferrite as well as of an intermediate <span>\\\\({{\\\\mathrm{Mg}}_{0.5}}^{\\\\vphantom{2+}}\\\\mathrm{Fe}_{0.5}^{2+}{\\\\mathrm{Fe}}_{2}^{3+}{\\\\mathrm{O}}_{4}^{\\\\vphantom{2+}}\\\\)</span> sample have been investigated for the first time up to approximately 19 and 13 GPa, respectively, using single-crystal X-ray diffraction in a diamond anvil cell. Samples were produced in high-pressure synthesis experiments to promote a high level of cation ordering, with the obtained inversion parameters larger than 0.83. The room pressure unit cell volumes, <i>V</i><sub>0</sub>, and bulk moduli, <i>K</i><sub><i>T</i>0</sub>, could be adequately constrained using a second-order Birch–Murnaghan equation of state, which yields <i>V</i><sub>0</sub> = 588.97 (8) Å<sup>3</sup> and <i>K</i><sub><i>T</i>0</sub> = 178.4 (5) GPa for magnesioferrite and <i>V</i><sub>0</sub> = 590.21 (5) Å<sup>3</sup> and <i>K</i><sub><i>T</i>0</sub> = 188.0 (6) GPa for the intermediate composition. As magnetite has <i>K</i><sub><i>T</i>0</sub> = 180 (1) GPa (Gatta et al. in Phys Chem Min 34:627–635, 2007. https://doi.org/10.1007/s00269-007-0177-3), this means the variation in <i>K</i><sub><i>T</i>0</sub> across the magnetite–magnesioferrite solid solution is significantly non-linear, in contrast to several other Fe–Mg spinels. The larger incompressibility of the intermediate composition compared to the two end-members may be a peculiarity of the magnetite–magnesioferrite solid solution caused by an interruption of Fe<sup>2+</sup>–Fe<sup>3+</sup> electron hopping by Mg cations substituting in the octahedral site.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-022-01217-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01217-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01217-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了计算Fe-Mg-O体系中新发现的高压混合价铁氧化物的热力学性质,需要磁铁矿-镁铁素体连接处前驱体反尖晶石相的状态方程信息。现有的状态方程数据,特别是氧化镁铁素体的状态方程数据不太一致,没有中间成分的数据。在这项研究中,利用金刚石砧细胞中的单晶x射线衍射,首次研究了近纯镁铁素体以及中间\({{\mathrm{Mg}}_{0.5}}^{\vphantom{2+}}\mathrm{Fe}_{0.5}^{2+}{\mathrm{Fe}}_{2}^{3+}{\mathrm{O}}_{4}^{\vphantom{2+}}\)样品的可压缩性分别高达约19和13 GPa。在高压合成实验中制备了样品,以促进高水平的阳离子有序,得到的反演参数大于0.83。用二阶Birch-Murnaghan状态方程可以充分约束室压单元胞体积V0和体积模量KT0,其中氧化镁铁素体的V0 = 588.97 (8) Å3和KT0 = 178.4 (5) GPa,中间组分的V0 = 590.21 (5) Å3和KT0 = 188.0 (6) GPa。As磁铁矿的KT0 = 180 (1) GPa (Gatta et al.,物理化学学报,34:627-635,2007)。https://doi.org/10.1007/s00269-007-0177-3),这意味着KT0在磁铁矿-镁铁素体固溶体中的变化是明显的非线性的,与其他几种铁镁尖晶石相反。中间组分的不可压缩性比两个端元更大,这可能是磁铁矿-镁铁素体固溶体的特性,这是由于镁离子在八面体位置取代导致Fe2+ -Fe3 +电子跳变中断所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compressibilities along the magnetite–magnesioferrite solid solution

Compressibilities along the magnetite–magnesioferrite solid solution

To calculate the thermodynamic properties of recently discovered high-pressure mixed valence iron oxides in the system Fe–Mg–O, information on the equation of state of precursor inverse spinel phases along the magnetite–magnesioferrite join is needed. The existing equation of state data, particularly for magnesioferrite, are in poor agreement and no data exist for intermediate compositions. In this study, the compressibility of nearly pure magnesioferrite as well as of an intermediate \({{\mathrm{Mg}}_{0.5}}^{\vphantom{2+}}\mathrm{Fe}_{0.5}^{2+}{\mathrm{Fe}}_{2}^{3+}{\mathrm{O}}_{4}^{\vphantom{2+}}\) sample have been investigated for the first time up to approximately 19 and 13 GPa, respectively, using single-crystal X-ray diffraction in a diamond anvil cell. Samples were produced in high-pressure synthesis experiments to promote a high level of cation ordering, with the obtained inversion parameters larger than 0.83. The room pressure unit cell volumes, V0, and bulk moduli, KT0, could be adequately constrained using a second-order Birch–Murnaghan equation of state, which yields V0 = 588.97 (8) Å3 and KT0 = 178.4 (5) GPa for magnesioferrite and V0 = 590.21 (5) Å3 and KT0 = 188.0 (6) GPa for the intermediate composition. As magnetite has KT0 = 180 (1) GPa (Gatta et al. in Phys Chem Min 34:627–635, 2007. https://doi.org/10.1007/s00269-007-0177-3), this means the variation in KT0 across the magnetite–magnesioferrite solid solution is significantly non-linear, in contrast to several other Fe–Mg spinels. The larger incompressibility of the intermediate composition compared to the two end-members may be a peculiarity of the magnetite–magnesioferrite solid solution caused by an interruption of Fe2+–Fe3+ electron hopping by Mg cations substituting in the octahedral site.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信