Jieqiong Shan, Chao Ye, Yunling Jiang, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao
{"title":"相关单原子催化剂中金属-金属相互作用","authors":"Jieqiong Shan, Chao Ye, Yunling Jiang, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao","doi":"10.1126/sciadv.abo0762","DOIUrl":null,"url":null,"abstract":"<div >Single-atom catalysts (SACs) include a promising family of electrocatalysts with unique geometric structures. Beyond conventional ones with fully isolated metal sites, an emerging class of catalysts with the adjacent metal single atoms exhibiting intersite metal-metal interactions appear in recent years and can be denoted as correlated SACs (C-SACs). This type of catalysts provides more opportunities to achieve substantial structural modification and performance enhancement toward a wider range of electrocatalytic applications. On the basis of a clear identification of metal-metal interactions, this review critically examines the recent research progress in C-SACs. It shows that the control of metal-metal interactions enables regulation of atomic structure, local coordination, and electronic properties of metal single atoms, which facilitate the modulation of electrocatalytic behavior of C-SACs. Last, we outline directions for future work in the design and development of C-SACs, which is indispensable for creating high-performing new SAC architectures.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"8 17","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.abo0762","citationCount":"74","resultStr":"{\"title\":\"Metal-metal interactions in correlated single-atom catalysts\",\"authors\":\"Jieqiong Shan, Chao Ye, Yunling Jiang, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao\",\"doi\":\"10.1126/sciadv.abo0762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Single-atom catalysts (SACs) include a promising family of electrocatalysts with unique geometric structures. Beyond conventional ones with fully isolated metal sites, an emerging class of catalysts with the adjacent metal single atoms exhibiting intersite metal-metal interactions appear in recent years and can be denoted as correlated SACs (C-SACs). This type of catalysts provides more opportunities to achieve substantial structural modification and performance enhancement toward a wider range of electrocatalytic applications. On the basis of a clear identification of metal-metal interactions, this review critically examines the recent research progress in C-SACs. It shows that the control of metal-metal interactions enables regulation of atomic structure, local coordination, and electronic properties of metal single atoms, which facilitate the modulation of electrocatalytic behavior of C-SACs. Last, we outline directions for future work in the design and development of C-SACs, which is indispensable for creating high-performing new SAC architectures.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"8 17\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.abo0762\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.abo0762\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.abo0762","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Metal-metal interactions in correlated single-atom catalysts
Single-atom catalysts (SACs) include a promising family of electrocatalysts with unique geometric structures. Beyond conventional ones with fully isolated metal sites, an emerging class of catalysts with the adjacent metal single atoms exhibiting intersite metal-metal interactions appear in recent years and can be denoted as correlated SACs (C-SACs). This type of catalysts provides more opportunities to achieve substantial structural modification and performance enhancement toward a wider range of electrocatalytic applications. On the basis of a clear identification of metal-metal interactions, this review critically examines the recent research progress in C-SACs. It shows that the control of metal-metal interactions enables regulation of atomic structure, local coordination, and electronic properties of metal single atoms, which facilitate the modulation of electrocatalytic behavior of C-SACs. Last, we outline directions for future work in the design and development of C-SACs, which is indispensable for creating high-performing new SAC architectures.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.