{"title":"第四纪元素掺入对Cu-Al-Fe高温形状记忆合金热性能和晶体微观结构的影响","authors":"E. Balcı, S. Akpinar","doi":"10.5541/IJOT.805275","DOIUrl":null,"url":null,"abstract":"Recently, researchers have shown an increased interest in Cu-based shape memory alloys due to their special characteristics, which can be used in high-temperature applications. In this study, ternary shape memory alloys in the form of CuAlFe with different ratios of iron and quaternary CuAlFe alloys containing Ni, Mn, and Ti were produced by arc melting. Then the produced alloys were kept at 900 ℃ for 24 hours to make sure that all constituents in the alloys were homogeneously distributed. The change in the transformation temperatures for all samples was checked out by Differential Scanning Calorimetry (DSC). Also, the change in the crystal structure and microstructure were determined by x-ray diffractometer (XRD) and scanning electron microscopy (SEM), respectively. The aim of this study is to compare the thermal and microstructural properties of quaternary alloys formed by adding Ni, Mn, and Ti elements to CuAlFe-based shape memory alloy with different rates, which is not available in the literature. The result of this study; although the electron concentration value increased, a significant decrease was observed in the values of the transformation temperatures. Increasing Fe-element decreased the transformation temperature non-linearly. Ni and Mn contents added to CuAlFe shape memory alloys have reduced transformation temperatures, such as A f and M f. The XRD and SEM-EDX measurements showed the martensite phase with some produced compound precipitated in the matrix phase","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quaternary Element Incorporation Effects on Thermal Properties and Crystal-Micro Structure of Cu-Al-Fe High Temperature Shape Memory Alloys\",\"authors\":\"E. Balcı, S. Akpinar\",\"doi\":\"10.5541/IJOT.805275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, researchers have shown an increased interest in Cu-based shape memory alloys due to their special characteristics, which can be used in high-temperature applications. In this study, ternary shape memory alloys in the form of CuAlFe with different ratios of iron and quaternary CuAlFe alloys containing Ni, Mn, and Ti were produced by arc melting. Then the produced alloys were kept at 900 ℃ for 24 hours to make sure that all constituents in the alloys were homogeneously distributed. The change in the transformation temperatures for all samples was checked out by Differential Scanning Calorimetry (DSC). Also, the change in the crystal structure and microstructure were determined by x-ray diffractometer (XRD) and scanning electron microscopy (SEM), respectively. The aim of this study is to compare the thermal and microstructural properties of quaternary alloys formed by adding Ni, Mn, and Ti elements to CuAlFe-based shape memory alloy with different rates, which is not available in the literature. The result of this study; although the electron concentration value increased, a significant decrease was observed in the values of the transformation temperatures. Increasing Fe-element decreased the transformation temperature non-linearly. Ni and Mn contents added to CuAlFe shape memory alloys have reduced transformation temperatures, such as A f and M f. The XRD and SEM-EDX measurements showed the martensite phase with some produced compound precipitated in the matrix phase\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/IJOT.805275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/IJOT.805275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Quaternary Element Incorporation Effects on Thermal Properties and Crystal-Micro Structure of Cu-Al-Fe High Temperature Shape Memory Alloys
Recently, researchers have shown an increased interest in Cu-based shape memory alloys due to their special characteristics, which can be used in high-temperature applications. In this study, ternary shape memory alloys in the form of CuAlFe with different ratios of iron and quaternary CuAlFe alloys containing Ni, Mn, and Ti were produced by arc melting. Then the produced alloys were kept at 900 ℃ for 24 hours to make sure that all constituents in the alloys were homogeneously distributed. The change in the transformation temperatures for all samples was checked out by Differential Scanning Calorimetry (DSC). Also, the change in the crystal structure and microstructure were determined by x-ray diffractometer (XRD) and scanning electron microscopy (SEM), respectively. The aim of this study is to compare the thermal and microstructural properties of quaternary alloys formed by adding Ni, Mn, and Ti elements to CuAlFe-based shape memory alloy with different rates, which is not available in the literature. The result of this study; although the electron concentration value increased, a significant decrease was observed in the values of the transformation temperatures. Increasing Fe-element decreased the transformation temperature non-linearly. Ni and Mn contents added to CuAlFe shape memory alloys have reduced transformation temperatures, such as A f and M f. The XRD and SEM-EDX measurements showed the martensite phase with some produced compound precipitated in the matrix phase
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.