{"title":"佐渡岛对新泻市和沿海平原的雪影效应","authors":"Hiroyuki Kusaka, Nobuyasu Suzuki, Masato Yabe, Hiroki Kobayashi","doi":"10.1002/asl.1182","DOIUrl":null,"url":null,"abstract":"<p>Japan's Hokuriku region, near the Sea of Japan, typically experiences heavy snowfall; however, Niigata City, the largest city on the Sea of Japan side, experiences lower levels of snowfall than neighbouring cities. This study investigates the snow-shadow effect of Sado Island on snowfall in Niigata City, located 45 km away leeward. Statistical analysis of long-term radar data for 10 winters showed that snow-shadow effects in the Niigata plain occurred in 151 (80%) of the 188 cases, during which a strong approaching wind reached the island. The location of this snow-shadow effect was always downwind of Sado Island and depended on the wind direction. Numerical experiments using the Weather Research and Forecasting model predicted that snowfall over the Niigata Plain would be lighter with the island than without it. Additionally, the snow-shadow effect occurs in areas more than 150 km downwind. The experiments showed that Sado Island reduces heat fluxes from the sea surface by weakening leeward winds. At the same time, the horizontal wind convergence downwind is weakened. Meanwhile, the orographic snowfall over Sado Island reduces the amount of water vapour, cloud water and cloud ice over the leeward sea. Therefore, Sado Island prevents cloud lines from redeveloping over the leeward sea and can further reduce snowfall over the leeward plain, including in Niigata City.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"24 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The snow-shadow effect of Sado Island on Niigata City and the coastal plain\",\"authors\":\"Hiroyuki Kusaka, Nobuyasu Suzuki, Masato Yabe, Hiroki Kobayashi\",\"doi\":\"10.1002/asl.1182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Japan's Hokuriku region, near the Sea of Japan, typically experiences heavy snowfall; however, Niigata City, the largest city on the Sea of Japan side, experiences lower levels of snowfall than neighbouring cities. This study investigates the snow-shadow effect of Sado Island on snowfall in Niigata City, located 45 km away leeward. Statistical analysis of long-term radar data for 10 winters showed that snow-shadow effects in the Niigata plain occurred in 151 (80%) of the 188 cases, during which a strong approaching wind reached the island. The location of this snow-shadow effect was always downwind of Sado Island and depended on the wind direction. Numerical experiments using the Weather Research and Forecasting model predicted that snowfall over the Niigata Plain would be lighter with the island than without it. Additionally, the snow-shadow effect occurs in areas more than 150 km downwind. The experiments showed that Sado Island reduces heat fluxes from the sea surface by weakening leeward winds. At the same time, the horizontal wind convergence downwind is weakened. Meanwhile, the orographic snowfall over Sado Island reduces the amount of water vapour, cloud water and cloud ice over the leeward sea. Therefore, Sado Island prevents cloud lines from redeveloping over the leeward sea and can further reduce snowfall over the leeward plain, including in Niigata City.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":\"24 11\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1182\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1182","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The snow-shadow effect of Sado Island on Niigata City and the coastal plain
Japan's Hokuriku region, near the Sea of Japan, typically experiences heavy snowfall; however, Niigata City, the largest city on the Sea of Japan side, experiences lower levels of snowfall than neighbouring cities. This study investigates the snow-shadow effect of Sado Island on snowfall in Niigata City, located 45 km away leeward. Statistical analysis of long-term radar data for 10 winters showed that snow-shadow effects in the Niigata plain occurred in 151 (80%) of the 188 cases, during which a strong approaching wind reached the island. The location of this snow-shadow effect was always downwind of Sado Island and depended on the wind direction. Numerical experiments using the Weather Research and Forecasting model predicted that snowfall over the Niigata Plain would be lighter with the island than without it. Additionally, the snow-shadow effect occurs in areas more than 150 km downwind. The experiments showed that Sado Island reduces heat fluxes from the sea surface by weakening leeward winds. At the same time, the horizontal wind convergence downwind is weakened. Meanwhile, the orographic snowfall over Sado Island reduces the amount of water vapour, cloud water and cloud ice over the leeward sea. Therefore, Sado Island prevents cloud lines from redeveloping over the leeward sea and can further reduce snowfall over the leeward plain, including in Niigata City.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.