对称矩阵上Riesz概率分布的高斯表示

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Abdelhamid Hassairi, Fatma Ktari, Raoudha Zine
{"title":"对称矩阵上Riesz概率分布的高斯表示","authors":"Abdelhamid Hassairi,&nbsp;Fatma Ktari,&nbsp;Raoudha Zine","doi":"10.1007/s10182-022-00436-w","DOIUrl":null,"url":null,"abstract":"<div><p>The Riesz probability distribution on symmetric matrices represents an important extension of the Wishart distribution. It is defined by its Laplace transform involving the notion of generalized power. Based on the fact that some Wishart distributions are presented by the mean of the multivariate Gaussian distribution, it is shown that some Riesz probability distributions which are not necessarily Wishart are also presented by the mean of Gaussian samples with missing data. As a corollary, we deduce a Gaussian representation of the inverse Riesz distribution and we give its expectation. The results are assessed in simulation studies.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"106 4","pages":"609 - 632"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00436-w.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Gaussian representation of the Riesz probability distribution on symmetric matrices\",\"authors\":\"Abdelhamid Hassairi,&nbsp;Fatma Ktari,&nbsp;Raoudha Zine\",\"doi\":\"10.1007/s10182-022-00436-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Riesz probability distribution on symmetric matrices represents an important extension of the Wishart distribution. It is defined by its Laplace transform involving the notion of generalized power. Based on the fact that some Wishart distributions are presented by the mean of the multivariate Gaussian distribution, it is shown that some Riesz probability distributions which are not necessarily Wishart are also presented by the mean of Gaussian samples with missing data. As a corollary, we deduce a Gaussian representation of the inverse Riesz distribution and we give its expectation. The results are assessed in simulation studies.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"106 4\",\"pages\":\"609 - 632\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10182-022-00436-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-022-00436-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00436-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对称矩阵上的Riesz概率分布是Wishart分布的一个重要推广。它是由广义幂的拉普拉斯变换定义的。基于一些Wishart分布是由多元高斯分布的均值表示的事实,证明了一些不一定是Wishart的Riesz概率分布也可以由缺失数据的高斯样本的均值表示。作为推论,我们推导出逆Riesz分布的高斯表示,并给出了它的期望。在模拟研究中对结果进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Gaussian representation of the Riesz probability distribution on symmetric matrices

The Riesz probability distribution on symmetric matrices represents an important extension of the Wishart distribution. It is defined by its Laplace transform involving the notion of generalized power. Based on the fact that some Wishart distributions are presented by the mean of the multivariate Gaussian distribution, it is shown that some Riesz probability distributions which are not necessarily Wishart are also presented by the mean of Gaussian samples with missing data. As a corollary, we deduce a Gaussian representation of the inverse Riesz distribution and we give its expectation. The results are assessed in simulation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信