一阶鞘的特征环与分支理论

IF 0.9 1区 数学 Q2 MATHEMATICS
Yuri Yatagawa
{"title":"一阶鞘的特征环与分支理论","authors":"Yuri Yatagawa","doi":"10.1090/jag/758","DOIUrl":null,"url":null,"abstract":"We compute the characteristic cycle of a rank one sheaf on a smooth surface over a perfect field of positive characteristic. We construct a canonical lifting on the cotangent bundle of Kato’s logarithmic characteristic cycle using ramification theory and prove the equality of the characteristic cycle and the canonical lifting. As corollaries, we obtain a computation of the singular support in terms of ramification theory and the Milnor formula for the canonical lifting.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2017-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristic cycle of a rank one sheaf and ramification theory\",\"authors\":\"Yuri Yatagawa\",\"doi\":\"10.1090/jag/758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the characteristic cycle of a rank one sheaf on a smooth surface over a perfect field of positive characteristic. We construct a canonical lifting on the cotangent bundle of Kato’s logarithmic characteristic cycle using ramification theory and prove the equality of the characteristic cycle and the canonical lifting. As corollaries, we obtain a computation of the singular support in terms of ramification theory and the Milnor formula for the canonical lifting.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/758\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/758","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们计算了正特征完美域上光滑表面上一阶鞘的特征环。利用分枝理论在Kato对数特征环的余切丛上构造了一个正则提升,并证明了特征环与正则提升的等价性。作为推论,我们根据分枝理论和正则提升的Milnor公式得到了奇异支持的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic cycle of a rank one sheaf and ramification theory
We compute the characteristic cycle of a rank one sheaf on a smooth surface over a perfect field of positive characteristic. We construct a canonical lifting on the cotangent bundle of Kato’s logarithmic characteristic cycle using ramification theory and prove the equality of the characteristic cycle and the canonical lifting. As corollaries, we obtain a computation of the singular support in terms of ramification theory and the Milnor formula for the canonical lifting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信