{"title":"一阶鞘的特征环与分支理论","authors":"Yuri Yatagawa","doi":"10.1090/jag/758","DOIUrl":null,"url":null,"abstract":"We compute the characteristic cycle of a rank one sheaf on a smooth surface over a perfect field of positive characteristic. We construct a canonical lifting on the cotangent bundle of Kato’s logarithmic characteristic cycle using ramification theory and prove the equality of the characteristic cycle and the canonical lifting. As corollaries, we obtain a computation of the singular support in terms of ramification theory and the Milnor formula for the canonical lifting.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristic cycle of a rank one sheaf and ramification theory\",\"authors\":\"Yuri Yatagawa\",\"doi\":\"10.1090/jag/758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the characteristic cycle of a rank one sheaf on a smooth surface over a perfect field of positive characteristic. We construct a canonical lifting on the cotangent bundle of Kato’s logarithmic characteristic cycle using ramification theory and prove the equality of the characteristic cycle and the canonical lifting. As corollaries, we obtain a computation of the singular support in terms of ramification theory and the Milnor formula for the canonical lifting.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/758\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/758","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characteristic cycle of a rank one sheaf and ramification theory
We compute the characteristic cycle of a rank one sheaf on a smooth surface over a perfect field of positive characteristic. We construct a canonical lifting on the cotangent bundle of Kato’s logarithmic characteristic cycle using ramification theory and prove the equality of the characteristic cycle and the canonical lifting. As corollaries, we obtain a computation of the singular support in terms of ramification theory and the Milnor formula for the canonical lifting.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.