Yugreisy Polanco, R. Otaíza, Florence Tellier, Karla Pérez-Araneda
{"title":"沙质影响对潮间带岩石海岸上纹状Mazzaella laminarioides (rhodophya, Gigartinales)形态的影响","authors":"Yugreisy Polanco, R. Otaíza, Florence Tellier, Karla Pérez-Araneda","doi":"10.1515/bot-2022-0076","DOIUrl":null,"url":null,"abstract":"Abstract Morphological variability is common among macroalgae. In central Chile, Mazzaella laminarioides extends throughout the intertidal rocky zones, where blades are reported to grow up to 20 cm in length. Nevertheless, in low rocky intertidal zones with sand-influence, blades are noticeably larger than in other shores without sand effect. The aim of this study was to compare the morphology of M. laminarioides blades from two different conditions. Blades collected from four sites with, and four without, sand-influence were evaluated with traditional morphometry. Results showed that blades were longer and wider in sand-influenced sites. Sand abrasion was not directly evaluated, but indirect effects such as the abundance of bare rock and of sand tolerant species were higher in areas with sand-influence. Also, long blades were restricted to sand-influenced sites, supporting the relation between these two variables. Molecular analyses using the COI marker confirmed large-bladed individuals as M. laminarioides. Results indicated that life cycle phase, seasonality and vertical height were not related to large blades. We suggest that restriction of large blades to sand-influenced sites may be related to the healing processes of basal holdfasts after suffering sand abrasion.","PeriodicalId":9191,"journal":{"name":"Botanica Marina","volume":"66 1","pages":"165 - 179"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of sand-influence on the morphology of Mazzaella laminarioides (Rhodophyta, Gigartinales) on rocky intertidal shores\",\"authors\":\"Yugreisy Polanco, R. Otaíza, Florence Tellier, Karla Pérez-Araneda\",\"doi\":\"10.1515/bot-2022-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Morphological variability is common among macroalgae. In central Chile, Mazzaella laminarioides extends throughout the intertidal rocky zones, where blades are reported to grow up to 20 cm in length. Nevertheless, in low rocky intertidal zones with sand-influence, blades are noticeably larger than in other shores without sand effect. The aim of this study was to compare the morphology of M. laminarioides blades from two different conditions. Blades collected from four sites with, and four without, sand-influence were evaluated with traditional morphometry. Results showed that blades were longer and wider in sand-influenced sites. Sand abrasion was not directly evaluated, but indirect effects such as the abundance of bare rock and of sand tolerant species were higher in areas with sand-influence. Also, long blades were restricted to sand-influenced sites, supporting the relation between these two variables. Molecular analyses using the COI marker confirmed large-bladed individuals as M. laminarioides. Results indicated that life cycle phase, seasonality and vertical height were not related to large blades. We suggest that restriction of large blades to sand-influenced sites may be related to the healing processes of basal holdfasts after suffering sand abrasion.\",\"PeriodicalId\":9191,\"journal\":{\"name\":\"Botanica Marina\",\"volume\":\"66 1\",\"pages\":\"165 - 179\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanica Marina\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/bot-2022-0076\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanica Marina","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/bot-2022-0076","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Effect of sand-influence on the morphology of Mazzaella laminarioides (Rhodophyta, Gigartinales) on rocky intertidal shores
Abstract Morphological variability is common among macroalgae. In central Chile, Mazzaella laminarioides extends throughout the intertidal rocky zones, where blades are reported to grow up to 20 cm in length. Nevertheless, in low rocky intertidal zones with sand-influence, blades are noticeably larger than in other shores without sand effect. The aim of this study was to compare the morphology of M. laminarioides blades from two different conditions. Blades collected from four sites with, and four without, sand-influence were evaluated with traditional morphometry. Results showed that blades were longer and wider in sand-influenced sites. Sand abrasion was not directly evaluated, but indirect effects such as the abundance of bare rock and of sand tolerant species were higher in areas with sand-influence. Also, long blades were restricted to sand-influenced sites, supporting the relation between these two variables. Molecular analyses using the COI marker confirmed large-bladed individuals as M. laminarioides. Results indicated that life cycle phase, seasonality and vertical height were not related to large blades. We suggest that restriction of large blades to sand-influenced sites may be related to the healing processes of basal holdfasts after suffering sand abrasion.
期刊介绍:
Botanica Marina publishes high-quality contributions from all of the disciplines of marine botany at all levels of biological organisation from subcellular to ecosystem: chemistry and applications, genomics, physiology and ecology, phylogeny and biogeography. Research involving global or interdisciplinary interest is especially welcome. Applied science papers are appreciated, particularly when they illustrate the application of emerging conceptual issues or promote developing technologies. The journal invites state-of-the art reviews dealing with recent developments in marine botany.