用高通量计算和机器学习方法确定线性硝基脂肪族爆轰特性的决定因素

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
Wen Qian , Jing Huang , Shi-tai Guo , Bo-wen Duan , Wei-yu Xie , Jian Liu , Chao-yang Zhang
{"title":"用高通量计算和机器学习方法确定线性硝基脂肪族爆轰特性的决定因素","authors":"Wen Qian ,&nbsp;Jing Huang ,&nbsp;Shi-tai Guo ,&nbsp;Bo-wen Duan ,&nbsp;Wei-yu Xie ,&nbsp;Jian Liu ,&nbsp;Chao-yang Zhang","doi":"10.1016/j.enmf.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a high-throughput computation (HTC) and machine learning (ML) combined method was applied to identify the determining factors of the detonation velocity (<span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span>) and detonation pressure (<span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span>) of energetic molecules and screen potential high-energy molecules with acceptable stability in a high-throughput way. The HTC was performed based on 1725 sample molecules abstracted from a dataset of over 10<sup>6</sup> linear nitroaliphatics with 1- to 6-membered C backbones and three types of substituents, namely single nitro group (-NO<sub>2</sub>), nitroamine (-NNO<sub>2</sub>), and nitrate ester (-ONO<sub>2</sub>). ML models were established based on the HTC results to screen high-energy molecules and to identify the determining factors of <span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span>. Compared with quantum chemistry calculation results, the absolute relative errors of <span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span> obtained using the ML models were less than 3.63% and 5%, respectively. Furthermore, eight molecules with high energy and acceptable stability were selected as potential candidates. This study shows the high efficiency of the combination of HTC and ML in high-throughput screening.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 283-292"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the determining factors of detonation properties for linear nitroaliphatics with high-throughput computation and machine learning\",\"authors\":\"Wen Qian ,&nbsp;Jing Huang ,&nbsp;Shi-tai Guo ,&nbsp;Bo-wen Duan ,&nbsp;Wei-yu Xie ,&nbsp;Jian Liu ,&nbsp;Chao-yang Zhang\",\"doi\":\"10.1016/j.enmf.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a high-throughput computation (HTC) and machine learning (ML) combined method was applied to identify the determining factors of the detonation velocity (<span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span>) and detonation pressure (<span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span>) of energetic molecules and screen potential high-energy molecules with acceptable stability in a high-throughput way. The HTC was performed based on 1725 sample molecules abstracted from a dataset of over 10<sup>6</sup> linear nitroaliphatics with 1- to 6-membered C backbones and three types of substituents, namely single nitro group (-NO<sub>2</sub>), nitroamine (-NNO<sub>2</sub>), and nitrate ester (-ONO<sub>2</sub>). ML models were established based on the HTC results to screen high-energy molecules and to identify the determining factors of <span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span>. Compared with quantum chemistry calculation results, the absolute relative errors of <span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span> obtained using the ML models were less than 3.63% and 5%, respectively. Furthermore, eight molecules with high energy and acceptable stability were selected as potential candidates. This study shows the high efficiency of the combination of HTC and ML in high-throughput screening.</div></div>\",\"PeriodicalId\":34595,\"journal\":{\"name\":\"Energetic Materials Frontiers\",\"volume\":\"5 4\",\"pages\":\"Pages 283-292\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetic Materials Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666647223000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647223000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用高通量计算(HTC)和机器学习(ML)相结合的方法,确定高能分子的爆速(vd)和爆压(pd)的决定因素,并以高通量的方式筛选稳定性可接受的潜在高能分子。HTC是基于从106个具有1- 6元C骨架和三种取代基(单硝基(- no2)、硝胺(- nno2)和硝酸酯(- ono2)的线性硝基脂肪族数据集中提取的1725个样品分子进行的。基于HTC结果建立ML模型,筛选高能分子,确定vd和pd的决定因素。与量子化学计算结果相比,用ML模型得到的vd和pd的绝对相对误差分别小于3.63%和5%。此外,还选择了8个具有高能量和可接受稳定性的分子作为候选分子。本研究显示了HTC与ML联合进行高通量筛选的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying the determining factors of detonation properties for linear nitroaliphatics with high-throughput computation and machine learning

Identifying the determining factors of detonation properties for linear nitroaliphatics with high-throughput computation and machine learning

Identifying the determining factors of detonation properties for linear nitroaliphatics with high-throughput computation and machine learning
In this work, a high-throughput computation (HTC) and machine learning (ML) combined method was applied to identify the determining factors of the detonation velocity (vd) and detonation pressure (pd) of energetic molecules and screen potential high-energy molecules with acceptable stability in a high-throughput way. The HTC was performed based on 1725 sample molecules abstracted from a dataset of over 106 linear nitroaliphatics with 1- to 6-membered C backbones and three types of substituents, namely single nitro group (-NO2), nitroamine (-NNO2), and nitrate ester (-ONO2). ML models were established based on the HTC results to screen high-energy molecules and to identify the determining factors of vd and pd. Compared with quantum chemistry calculation results, the absolute relative errors of vd and pd obtained using the ML models were less than 3.63% and 5%, respectively. Furthermore, eight molecules with high energy and acceptable stability were selected as potential candidates. This study shows the high efficiency of the combination of HTC and ML in high-throughput screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energetic Materials Frontiers
Energetic Materials Frontiers Materials Science-Materials Science (miscellaneous)
CiteScore
6.90
自引率
0.00%
发文量
42
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信