{"title":"利用代谢网络模型中基因组和蛋白质组学数据得出的资源约束","authors":"Kobe De Becker , Niccolò Totis , Kristel Bernaerts , Steffen Waldherr","doi":"10.1016/j.coisb.2021.100400","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing amount of available high-content data in genomics, proteomics, and metabolomics has significantly improved the predictive power and model accuracy of genome-scale metabolic network models in recent years. We review recent constraint-based modeling approaches that incorporate genomics and proteomics data to form resource allocation models. Different modeling approaches to build resource allocation models and the related enzyme-constrained genome-scale metabolic models are discussed and evaluated with respect to differences regarding model features. In addition, an overview of the data required to construct, simulate and validate models for the different approaches is given, together with a list of relevant databases.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021000950/pdfft?md5=2f27b64fda369764a9aea6b24274176c&pid=1-s2.0-S2452310021000950-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Using resource constraints derived from genomic and proteomic data in metabolic network models\",\"authors\":\"Kobe De Becker , Niccolò Totis , Kristel Bernaerts , Steffen Waldherr\",\"doi\":\"10.1016/j.coisb.2021.100400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing amount of available high-content data in genomics, proteomics, and metabolomics has significantly improved the predictive power and model accuracy of genome-scale metabolic network models in recent years. We review recent constraint-based modeling approaches that incorporate genomics and proteomics data to form resource allocation models. Different modeling approaches to build resource allocation models and the related enzyme-constrained genome-scale metabolic models are discussed and evaluated with respect to differences regarding model features. In addition, an overview of the data required to construct, simulate and validate models for the different approaches is given, together with a list of relevant databases.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000950/pdfft?md5=2f27b64fda369764a9aea6b24274176c&pid=1-s2.0-S2452310021000950-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Using resource constraints derived from genomic and proteomic data in metabolic network models
The increasing amount of available high-content data in genomics, proteomics, and metabolomics has significantly improved the predictive power and model accuracy of genome-scale metabolic network models in recent years. We review recent constraint-based modeling approaches that incorporate genomics and proteomics data to form resource allocation models. Different modeling approaches to build resource allocation models and the related enzyme-constrained genome-scale metabolic models are discussed and evaluated with respect to differences regarding model features. In addition, an overview of the data required to construct, simulate and validate models for the different approaches is given, together with a list of relevant databases.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution