氧化镁/氢菱镁矿混合物中含水镁石(HCB)

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Alexander German , Frank Winnefeld , Pietro Lura , Daniel Rentsch , Barbara Lothenbach
{"title":"氧化镁/氢菱镁矿混合物中含水镁石(HCB)","authors":"Alexander German ,&nbsp;Frank Winnefeld ,&nbsp;Pietro Lura ,&nbsp;Daniel Rentsch ,&nbsp;Barbara Lothenbach","doi":"10.1016/j.cemconres.2023.107304","DOIUrl":null,"url":null,"abstract":"<div><p>The hydration of reactive MgO in presence of hydromagnesite was investigated using analyses of the solid and the liquid phase. A brucite-like phase with low crystallinity was identified as hydration product. A partial destabilization of hydromagnesite was observed and it is suggested that the carbonate was taken up by the brucite-like phase. Furthermore, it was evidenced by thermogravimetry that this phase contained loosely bound “gel water”. Thus, a hypothetical <em>hydrous carbonate</em>-containing <em>brucite</em> (HCB) phase is proposed with a tentative composition MgCO<sub>3</sub>·35Mg(OH)<sub>2</sub>·H<sub>2</sub>O derived from mass balance calculations. Based on the solution chemistry and other considerations, its thermodynamic data were determined. Thermodynamic modeling of the hydrate assemblage of MgO/hydromagnesite blends confirmed the stability of HCB in the presence of hydromagnesite and brucite.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"173 ","pages":"Article 107304"},"PeriodicalIF":10.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008884623002181/pdfft?md5=1582310352468aefdd44cbe6f6d36966&pid=1-s2.0-S0008884623002181-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Hydrous carbonate-containing brucite (HCB) in MgO/hydromagnesite blends\",\"authors\":\"Alexander German ,&nbsp;Frank Winnefeld ,&nbsp;Pietro Lura ,&nbsp;Daniel Rentsch ,&nbsp;Barbara Lothenbach\",\"doi\":\"10.1016/j.cemconres.2023.107304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hydration of reactive MgO in presence of hydromagnesite was investigated using analyses of the solid and the liquid phase. A brucite-like phase with low crystallinity was identified as hydration product. A partial destabilization of hydromagnesite was observed and it is suggested that the carbonate was taken up by the brucite-like phase. Furthermore, it was evidenced by thermogravimetry that this phase contained loosely bound “gel water”. Thus, a hypothetical <em>hydrous carbonate</em>-containing <em>brucite</em> (HCB) phase is proposed with a tentative composition MgCO<sub>3</sub>·35Mg(OH)<sub>2</sub>·H<sub>2</sub>O derived from mass balance calculations. Based on the solution chemistry and other considerations, its thermodynamic data were determined. Thermodynamic modeling of the hydrate assemblage of MgO/hydromagnesite blends confirmed the stability of HCB in the presence of hydromagnesite and brucite.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"173 \",\"pages\":\"Article 107304\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0008884623002181/pdfft?md5=1582310352468aefdd44cbe6f6d36966&pid=1-s2.0-S0008884623002181-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884623002181\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884623002181","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

通过固相和液相分析,研究了活性氧化镁在氢菱镁矿存在下的水化反应。水化产物为低结晶度的类水镁石相。观察到氢菱镁矿的部分失稳,认为碳酸盐被类水镁石相所吸收。此外,热重法证明该相含有松散结合的“凝胶水”。因此,我们提出了一种假想的含碳酸盐水镁石(HCB)相,其组成由质量平衡计算得出,暂定为MgCO3·35Mg(OH)2·H2O。基于溶液化学等方面的考虑,确定了其热力学数据。MgO/ hydro菱镁矿混合物水合物组合的热力学模型证实了HCB在hydro菱镁矿和水镁石存在下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrous carbonate-containing brucite (HCB) in MgO/hydromagnesite blends

The hydration of reactive MgO in presence of hydromagnesite was investigated using analyses of the solid and the liquid phase. A brucite-like phase with low crystallinity was identified as hydration product. A partial destabilization of hydromagnesite was observed and it is suggested that the carbonate was taken up by the brucite-like phase. Furthermore, it was evidenced by thermogravimetry that this phase contained loosely bound “gel water”. Thus, a hypothetical hydrous carbonate-containing brucite (HCB) phase is proposed with a tentative composition MgCO3·35Mg(OH)2·H2O derived from mass balance calculations. Based on the solution chemistry and other considerations, its thermodynamic data were determined. Thermodynamic modeling of the hydrate assemblage of MgO/hydromagnesite blends confirmed the stability of HCB in the presence of hydromagnesite and brucite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信