非定常分布横向载荷作用下各向同性Kirchhoff-Love板的弹性扩散振动

Q3 Materials Science
Gu Yu, A. Zemskov, D. Tarlakovskii
{"title":"非定常分布横向载荷作用下各向同性Kirchhoff-Love板的弹性扩散振动","authors":"Gu Yu, A. Zemskov, D. Tarlakovskii","doi":"10.15593/perm.mech/2021.3.05","DOIUrl":null,"url":null,"abstract":"We investigated an unsteady elastic diffusion vibration of a simply supported rectangular isotropic Kirchhoff-Love plate. The plate is under the action of a distributed transverse load. A model that describes coupled elastic diffusion processes in a multicomponent continuum is used for the mathematical problem formulation. The model is taking into account the diffusion fluxes relaxation. The transverse vibration equations of a rectangular isotropic Kirchhoff-Love plate with diffusion were obtained from the model using the d'Alembert variational principle. The initial-boundary value problem of a freely supported isotropic rectangular plate bending is formulated on the basis of the obtained equations. The plate is under the action of elastic diffusion perturbations distributed over the surface. The problem solution of an unsteady elastic diffusion plate vibration is sought in an integral form. The surface Green's functions are the kernels of the integral representations. To find the Green's functions, we used the Laplace transform in time and the expansion into double trigonometric Fourier series in spatial coordinates. Green's functions in the image domain are represented in the form of rational functions and depend on the Laplace transform parameter. The transition to the original domain is done analytically through residues and tables of operational calculus. The surface Green's function analytical expressions are obtained. As a calculation example, we considered a freely supported elastodiffusive plate under the action of suddenly applied unsteady bending moments distributed over the plate surface. By using a three-component continuum, a numerical study of interactions between unsteady mechanical and diffusion fieldsis done for an isotropic plate. The influence of relaxation effects on the kinetics of mass transfer is investigated. The solution is presented in the analytical form, as well as in the graphs of the displacement fields and concentration increments on time and coordinates. At the end of the publication, the main conclusions are given about the fields coupling effect and the relaxation of diffusion fluxes on the stress-strain state and mass transfer in the plate.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic diffusion vibrations of an isotropic Kirchhoff-Love plate under an unsteady distributed transverse load\",\"authors\":\"Gu Yu, A. Zemskov, D. Tarlakovskii\",\"doi\":\"10.15593/perm.mech/2021.3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated an unsteady elastic diffusion vibration of a simply supported rectangular isotropic Kirchhoff-Love plate. The plate is under the action of a distributed transverse load. A model that describes coupled elastic diffusion processes in a multicomponent continuum is used for the mathematical problem formulation. The model is taking into account the diffusion fluxes relaxation. The transverse vibration equations of a rectangular isotropic Kirchhoff-Love plate with diffusion were obtained from the model using the d'Alembert variational principle. The initial-boundary value problem of a freely supported isotropic rectangular plate bending is formulated on the basis of the obtained equations. The plate is under the action of elastic diffusion perturbations distributed over the surface. The problem solution of an unsteady elastic diffusion plate vibration is sought in an integral form. The surface Green's functions are the kernels of the integral representations. To find the Green's functions, we used the Laplace transform in time and the expansion into double trigonometric Fourier series in spatial coordinates. Green's functions in the image domain are represented in the form of rational functions and depend on the Laplace transform parameter. The transition to the original domain is done analytically through residues and tables of operational calculus. The surface Green's function analytical expressions are obtained. As a calculation example, we considered a freely supported elastodiffusive plate under the action of suddenly applied unsteady bending moments distributed over the plate surface. By using a three-component continuum, a numerical study of interactions between unsteady mechanical and diffusion fieldsis done for an isotropic plate. The influence of relaxation effects on the kinetics of mass transfer is investigated. The solution is presented in the analytical form, as well as in the graphs of the displacement fields and concentration increments on time and coordinates. At the end of the publication, the main conclusions are given about the fields coupling effect and the relaxation of diffusion fluxes on the stress-strain state and mass transfer in the plate.\",\"PeriodicalId\":38176,\"journal\":{\"name\":\"PNRPU Mechanics Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNRPU Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15593/perm.mech/2021.3.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2021.3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

研究了简支矩形各向同性基希霍夫-洛夫板的非定常弹性扩散振动。板受到横向分布荷载的作用。一个描述多组分连续介质中耦合弹性扩散过程的模型被用于数学问题的表述。该模型考虑了扩散通量的松弛。利用d'Alembert变分原理,得到了具有扩散的矩形各向同性Kirchhoff-Love板的横向振动方程。在此基础上,导出了自由支承各向同性矩形板弯曲的初边值问题。板受到分布在表面的弹性扩散扰动的作用。以积分形式寻求非定常弹性扩散板振动问题的解。表面格林函数是积分表示的核。为了找到格林函数,我们使用了时间上的拉普拉斯变换和空间坐标上的二重三角傅立叶级数展开。图像域的格林函数以有理函数的形式表示,并依赖于拉普拉斯变换参数。转换到原始区域是通过残数和运算演算表解析完成的。得到了曲面格林函数解析表达式。作为一个计算实例,我们考虑了一个自由支承弹性扩散板在分布在板表面的非定常弯矩的作用下。采用三分量连续介质,对各向同性板的非定常力学场和扩散场相互作用进行了数值研究。研究了弛豫效应对传质动力学的影响。以解析形式给出了解,并以位移场和浓度增量在时间和坐标上的图形给出了解。最后给出了场耦合效应和扩散通量的松弛对板内应力-应变状态和传质的影响的主要结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic diffusion vibrations of an isotropic Kirchhoff-Love plate under an unsteady distributed transverse load
We investigated an unsteady elastic diffusion vibration of a simply supported rectangular isotropic Kirchhoff-Love plate. The plate is under the action of a distributed transverse load. A model that describes coupled elastic diffusion processes in a multicomponent continuum is used for the mathematical problem formulation. The model is taking into account the diffusion fluxes relaxation. The transverse vibration equations of a rectangular isotropic Kirchhoff-Love plate with diffusion were obtained from the model using the d'Alembert variational principle. The initial-boundary value problem of a freely supported isotropic rectangular plate bending is formulated on the basis of the obtained equations. The plate is under the action of elastic diffusion perturbations distributed over the surface. The problem solution of an unsteady elastic diffusion plate vibration is sought in an integral form. The surface Green's functions are the kernels of the integral representations. To find the Green's functions, we used the Laplace transform in time and the expansion into double trigonometric Fourier series in spatial coordinates. Green's functions in the image domain are represented in the form of rational functions and depend on the Laplace transform parameter. The transition to the original domain is done analytically through residues and tables of operational calculus. The surface Green's function analytical expressions are obtained. As a calculation example, we considered a freely supported elastodiffusive plate under the action of suddenly applied unsteady bending moments distributed over the plate surface. By using a three-component continuum, a numerical study of interactions between unsteady mechanical and diffusion fieldsis done for an isotropic plate. The influence of relaxation effects on the kinetics of mass transfer is investigated. The solution is presented in the analytical form, as well as in the graphs of the displacement fields and concentration increments on time and coordinates. At the end of the publication, the main conclusions are given about the fields coupling effect and the relaxation of diffusion fluxes on the stress-strain state and mass transfer in the plate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信