D. Ojeda-Barrios, Oscar Cruz-Álvarez, E. Sánchez-Chávez, J. P. Ciscomani-Larios
{"title":"叶面施锌对山核桃年生产力、叶面养分、生物活性物质和氧化代谢的影响","authors":"D. Ojeda-Barrios, Oscar Cruz-Álvarez, E. Sánchez-Chávez, J. P. Ciscomani-Larios","doi":"10.2478/fhort-2023-0014","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pecan nut production is quite commonly limited by zinc (Zn) deficiency. Here, we evaluate the response in terms of the concentrations of non-structural carbohydrates, yield components, foliar nutrient levels and oxidative metabolism in young ‘Western Schley’ pecan nut trees in response to foliar applications of 200 mg · L−1 of Zn as one of the following: ZnSO4, Zn-EDTA, ZnO nanoparticles (NPs) or the proprietary product ‘nitrazinc’ (NZN) (the control). Across two consecutive growing seasons, the spraying of Zn in these various forms helped maintain the foliar concentrations of non-structural carbohydrates, foliar nutrients (total-N, Ca2+ and Mg2+) and the kernel percentage of nuts. Likewise, trees sprayed with ZnSO4 maintained the concentrations of Zn in the leaflets across seasons. On the other hand, Zn-EDTA decreased the concentration of chlorophyll and total carotenoids. In general, leaflets treated with ZnSO4, Zn-EDTA and ZnO NPs reduced their oxidative metabolism. Sources of Zn – such as ZnSO4 – are commercially viable alternatives suitable for increasing the performance of some parameters associated with the yield and quality of nuts in pecan. It would be worthwhile to determine the optimal Zn dose rates for the various pecan cultivars in common use and also to increase our understanding of the physiological and biochemical changes associated with foliar Zn applications.","PeriodicalId":12277,"journal":{"name":"Folia Horticulturae","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of foliar application of zinc on annual productivity, foliar nutrients, bioactive compounds and oxidative metabolism in pecan\",\"authors\":\"D. Ojeda-Barrios, Oscar Cruz-Álvarez, E. Sánchez-Chávez, J. P. Ciscomani-Larios\",\"doi\":\"10.2478/fhort-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Pecan nut production is quite commonly limited by zinc (Zn) deficiency. Here, we evaluate the response in terms of the concentrations of non-structural carbohydrates, yield components, foliar nutrient levels and oxidative metabolism in young ‘Western Schley’ pecan nut trees in response to foliar applications of 200 mg · L−1 of Zn as one of the following: ZnSO4, Zn-EDTA, ZnO nanoparticles (NPs) or the proprietary product ‘nitrazinc’ (NZN) (the control). Across two consecutive growing seasons, the spraying of Zn in these various forms helped maintain the foliar concentrations of non-structural carbohydrates, foliar nutrients (total-N, Ca2+ and Mg2+) and the kernel percentage of nuts. Likewise, trees sprayed with ZnSO4 maintained the concentrations of Zn in the leaflets across seasons. On the other hand, Zn-EDTA decreased the concentration of chlorophyll and total carotenoids. In general, leaflets treated with ZnSO4, Zn-EDTA and ZnO NPs reduced their oxidative metabolism. Sources of Zn – such as ZnSO4 – are commercially viable alternatives suitable for increasing the performance of some parameters associated with the yield and quality of nuts in pecan. It would be worthwhile to determine the optimal Zn dose rates for the various pecan cultivars in common use and also to increase our understanding of the physiological and biochemical changes associated with foliar Zn applications.\",\"PeriodicalId\":12277,\"journal\":{\"name\":\"Folia Horticulturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/fhort-2023-0014\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/fhort-2023-0014","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
Effect of foliar application of zinc on annual productivity, foliar nutrients, bioactive compounds and oxidative metabolism in pecan
ABSTRACT Pecan nut production is quite commonly limited by zinc (Zn) deficiency. Here, we evaluate the response in terms of the concentrations of non-structural carbohydrates, yield components, foliar nutrient levels and oxidative metabolism in young ‘Western Schley’ pecan nut trees in response to foliar applications of 200 mg · L−1 of Zn as one of the following: ZnSO4, Zn-EDTA, ZnO nanoparticles (NPs) or the proprietary product ‘nitrazinc’ (NZN) (the control). Across two consecutive growing seasons, the spraying of Zn in these various forms helped maintain the foliar concentrations of non-structural carbohydrates, foliar nutrients (total-N, Ca2+ and Mg2+) and the kernel percentage of nuts. Likewise, trees sprayed with ZnSO4 maintained the concentrations of Zn in the leaflets across seasons. On the other hand, Zn-EDTA decreased the concentration of chlorophyll and total carotenoids. In general, leaflets treated with ZnSO4, Zn-EDTA and ZnO NPs reduced their oxidative metabolism. Sources of Zn – such as ZnSO4 – are commercially viable alternatives suitable for increasing the performance of some parameters associated with the yield and quality of nuts in pecan. It would be worthwhile to determine the optimal Zn dose rates for the various pecan cultivars in common use and also to increase our understanding of the physiological and biochemical changes associated with foliar Zn applications.
期刊介绍:
Folia Horticulturae is an international, scientific journal published in English. It covers a broad research spectrum of aspects related to horticultural science that are of interest to a wide scientific community and have an impact on progress in both basic and applied research carried out with the use of horticultural crops and their products. The journal’s aim is to disseminate recent findings and serve as a forum for presenting views as well as for discussing important problems and prospects of modern horticulture, particularly in relation to sustainable production of high yield and quality of horticultural products, including their impact on human health.