K. De Commer, S. Neshveyev, L. Tuset, M. Yamashita
{"title":"对称空间量子化的比较:分圆Knizhnik–Zamolodchikov方程和Letzter–Kolb协方程","authors":"K. De Commer, S. Neshveyev, L. Tuset, M. Yamashita","doi":"10.1017/fmp.2023.11","DOIUrl":null,"url":null,"abstract":"Abstract We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–Zamolodchikov (KZ) equations and the other on the Letzter–Kolb coideals. This equivalence can be upgraded to that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible invariant of the quantization. As an application we obtain a Kohno–Drinfeld type theorem on type \n$\\mathrm {B}$\n braid group representations defined by the monodromy of KZ-equations and by the Balagović–Kolb universal K-matrices. The cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually nonequivalent quasi-coactions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik–Zamolodchikov equations and Letzter–Kolb coideals\",\"authors\":\"K. De Commer, S. Neshveyev, L. Tuset, M. Yamashita\",\"doi\":\"10.1017/fmp.2023.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–Zamolodchikov (KZ) equations and the other on the Letzter–Kolb coideals. This equivalence can be upgraded to that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible invariant of the quantization. As an application we obtain a Kohno–Drinfeld type theorem on type \\n$\\\\mathrm {B}$\\n braid group representations defined by the monodromy of KZ-equations and by the Balagović–Kolb universal K-matrices. The cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually nonequivalent quasi-coactions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik–Zamolodchikov equations and Letzter–Kolb coideals
Abstract We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–Zamolodchikov (KZ) equations and the other on the Letzter–Kolb coideals. This equivalence can be upgraded to that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible invariant of the quantization. As an application we obtain a Kohno–Drinfeld type theorem on type
$\mathrm {B}$
braid group representations defined by the monodromy of KZ-equations and by the Balagović–Kolb universal K-matrices. The cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually nonequivalent quasi-coactions.