Asifa Tassaddiq, Jamshaid Ahmad, A. Al-Mazrooei, Durdana Lateef, F. Lakhani
{"title":"二复值度量空间中的公共不动点结果及其应用","authors":"Asifa Tassaddiq, Jamshaid Ahmad, A. Al-Mazrooei, Durdana Lateef, F. Lakhani","doi":"10.3934/math.2023278","DOIUrl":null,"url":null,"abstract":"Metric fixed-point theory has become an essential tool in computer science, communication engineering and complex systems to validate the processes and algorithms by using functional equations and iterative procedures. The aim of this article is to obtain common fixed point results in a bicomplex valued metric space for rational contractions involving control functions of two variables. Our theorems generalize some famous results from literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the context of bicomplex valued metric space.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On common fixed point results in bicomplex valued metric spaces with application\",\"authors\":\"Asifa Tassaddiq, Jamshaid Ahmad, A. Al-Mazrooei, Durdana Lateef, F. Lakhani\",\"doi\":\"10.3934/math.2023278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metric fixed-point theory has become an essential tool in computer science, communication engineering and complex systems to validate the processes and algorithms by using functional equations and iterative procedures. The aim of this article is to obtain common fixed point results in a bicomplex valued metric space for rational contractions involving control functions of two variables. Our theorems generalize some famous results from literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the context of bicomplex valued metric space.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023278\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023278","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On common fixed point results in bicomplex valued metric spaces with application
Metric fixed-point theory has become an essential tool in computer science, communication engineering and complex systems to validate the processes and algorithms by using functional equations and iterative procedures. The aim of this article is to obtain common fixed point results in a bicomplex valued metric space for rational contractions involving control functions of two variables. Our theorems generalize some famous results from literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the context of bicomplex valued metric space.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.