儿茶素茶叶提取物控释系统海藻酸盐水凝胶的制备与表征

IF 0.5 Q4 ENGINEERING, BIOMEDICAL
V. V. Nguyen, Gia Quynh Nhu Pham, T. Nguyen, V. Nguyen
{"title":"儿茶素茶叶提取物控释系统海藻酸盐水凝胶的制备与表征","authors":"V. V. Nguyen, Gia Quynh Nhu Pham, T. Nguyen, V. Nguyen","doi":"10.4028/p-63176q","DOIUrl":null,"url":null,"abstract":"Polyphenolic chemicals found in tea leaves are frequently used in pharmaceutics and the food industry. Catechin is a polyphenol that has antimicrobial, antioxidant, and antibacterial effects, as well as other health advantages. The goal of this study was to create a catechin-encapsulated alginate hydrogel (Cate-ALG) that would protect catechin from degradation and bioactivity loss in stressful environments while also delivering catechin. The antioxidant ability of catechin was found to be greater than that of vitamin C using the 2,2-diphenyl-1-pierylhyrazyl assay. The FT-IR spectra revealed the distinct peaks of catechin and alginate. Additionally, due to the hydrogen bond interaction between alginate and catechin molecules, frequency downshifting was observed in the carbonyl and hydroxyl regions. Furthermore, release profile revealed a burst release of 5% catechin-ALG in the first 25 min. On the other hand, the 3% Cate-ALG approached the controlled release profile of catechin and increased the release time by more than 40 minutes. The catechin in alginate hydrogel has the potential for controlled release via transdermal and wound dressing applications.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract\",\"authors\":\"V. V. Nguyen, Gia Quynh Nhu Pham, T. Nguyen, V. Nguyen\",\"doi\":\"10.4028/p-63176q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyphenolic chemicals found in tea leaves are frequently used in pharmaceutics and the food industry. Catechin is a polyphenol that has antimicrobial, antioxidant, and antibacterial effects, as well as other health advantages. The goal of this study was to create a catechin-encapsulated alginate hydrogel (Cate-ALG) that would protect catechin from degradation and bioactivity loss in stressful environments while also delivering catechin. The antioxidant ability of catechin was found to be greater than that of vitamin C using the 2,2-diphenyl-1-pierylhyrazyl assay. The FT-IR spectra revealed the distinct peaks of catechin and alginate. Additionally, due to the hydrogen bond interaction between alginate and catechin molecules, frequency downshifting was observed in the carbonyl and hydroxyl regions. Furthermore, release profile revealed a burst release of 5% catechin-ALG in the first 25 min. On the other hand, the 3% Cate-ALG approached the controlled release profile of catechin and increased the release time by more than 40 minutes. The catechin in alginate hydrogel has the potential for controlled release via transdermal and wound dressing applications.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-63176q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-63176q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

茶叶中的多酚类化学物质经常用于制药和食品工业。儿茶素是一种多酚,具有抗菌、抗氧化和抗菌作用,以及其他健康优势。本研究的目标是创造一种儿茶素包封的海藻酸盐水凝胶(Cate-ALG),该水凝胶将保护儿茶素在压力环境中不被降解和生物活性损失,同时也能输送儿茶素。使用2,2-二苯基-1-丙烯基hyrazyl测定发现儿茶素的抗氧化能力大于维生素C的抗氧化能力。FT-IR光谱显示儿茶素和海藻酸盐具有明显的峰。此外,由于海藻酸盐和儿茶素分子之间的氢键相互作用,在羰基和羟基区域观察到频率下降。此外,释放曲线显示5%儿茶素ALG在最初25分钟内突然释放。另一方面,3%儿茶素ALG接近儿茶素的控制释放曲线,并将释放时间增加了40分钟以上。藻酸盐水凝胶中的儿茶素具有通过透皮和伤口敷料应用控制释放的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract
Polyphenolic chemicals found in tea leaves are frequently used in pharmaceutics and the food industry. Catechin is a polyphenol that has antimicrobial, antioxidant, and antibacterial effects, as well as other health advantages. The goal of this study was to create a catechin-encapsulated alginate hydrogel (Cate-ALG) that would protect catechin from degradation and bioactivity loss in stressful environments while also delivering catechin. The antioxidant ability of catechin was found to be greater than that of vitamin C using the 2,2-diphenyl-1-pierylhyrazyl assay. The FT-IR spectra revealed the distinct peaks of catechin and alginate. Additionally, due to the hydrogen bond interaction between alginate and catechin molecules, frequency downshifting was observed in the carbonyl and hydroxyl regions. Furthermore, release profile revealed a burst release of 5% catechin-ALG in the first 25 min. On the other hand, the 3% Cate-ALG approached the controlled release profile of catechin and increased the release time by more than 40 minutes. The catechin in alginate hydrogel has the potential for controlled release via transdermal and wound dressing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信