任意有限域上的差积

IF 1 3区 数学 Q1 MATHEMATICS
Discrete Analysis Pub Date : 2017-05-18 DOI:10.19086/DA.5098
B. Murphy, G. Petridis
{"title":"任意有限域上的差积","authors":"B. Murphy, G. Petridis","doi":"10.19086/DA.5098","DOIUrl":null,"url":null,"abstract":"There exists an absolute constant $\\delta > 0$ such that for all $q$ and all subsets $A \\subseteq \\mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \\delta}$, then \\[ |(A-A)(A-A)| = |\\{ (a -b) (c-d) : a,b,c,d \\in A\\}| > \\frac{q}{2}. \\] Any $\\delta q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. \nOur proof is based on a qualitatively optimal characterisation of sets $A,X \\subseteq \\mathbb{F}_q$ for which the number of solutions to the equation \\[ (a_1-a_2) = x (a_3-a_4) \\, , \\; a_1,a_2, a_3, a_4 \\in A, x \\in X \\] is nearly maximum. \nA key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. \nWe also prove a stronger statement for \\[ (A-B)(C-D) = \\{ (a -b) (c-d) : a \\in A, b \\in B, c \\in C, d \\in D\\} \\] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Products of Differences over Arbitrary Finite Fields\",\"authors\":\"B. Murphy, G. Petridis\",\"doi\":\"10.19086/DA.5098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exists an absolute constant $\\\\delta > 0$ such that for all $q$ and all subsets $A \\\\subseteq \\\\mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \\\\delta}$, then \\\\[ |(A-A)(A-A)| = |\\\\{ (a -b) (c-d) : a,b,c,d \\\\in A\\\\}| > \\\\frac{q}{2}. \\\\] Any $\\\\delta q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. \\nOur proof is based on a qualitatively optimal characterisation of sets $A,X \\\\subseteq \\\\mathbb{F}_q$ for which the number of solutions to the equation \\\\[ (a_1-a_2) = x (a_3-a_4) \\\\, , \\\\; a_1,a_2, a_3, a_4 \\\\in A, x \\\\in X \\\\] is nearly maximum. \\nA key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. \\nWe also prove a stronger statement for \\\\[ (A-B)(C-D) = \\\\{ (a -b) (c-d) : a \\\\in A, b \\\\in B, c \\\\in C, d \\\\in D\\\\} \\\\] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.5098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.5098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

存在一个绝对常数$\delta > 0$,使得对于所有$q$和所有具有$q$元素的有限域的子集$A \subseteq \mathbb{F}_q$,如果$|A| > q^{2/3 - \delta}$,那么\[ |(A-A)(A-A)| = |\{ (a -b) (c-d) : a,b,c,d \in A\}| > \frac{q}{2}. \] Any $\delta q^{2/3}$,由于Bennett, Hart, Iosevich, Pakianathan和Rudnev,这是此类问题的典型。我们的证明是基于集合$A,X \subseteq \mathbb{F}_q$的定性最优特征,其中方程\[ (a_1-a_2) = x (a_3-a_4) \, , \; a_1,a_2, a_3, a_4 \in A, x \in X \]的解的数量几乎是最大的。一个关键因素是确定集合$A, X$的精确代数结构,其中$|A + XA|$几乎是最小的,这改进了Bourgain和Glibichuk使用Gill, Helfgott和Tao的工作的结果。当$A,B,C,D$是素域上的集合时,我们也证明了一个更强的命题\[ (A-B)(C-D) = \{ (a -b) (c-d) : a \in A, b \in B, c \in C, d \in D\} \],推广了Roche-Newton, Rudnev, Shkredov和作者的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of Differences over Arbitrary Finite Fields
There exists an absolute constant $\delta > 0$ such that for all $q$ and all subsets $A \subseteq \mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \delta}$, then \[ |(A-A)(A-A)| = |\{ (a -b) (c-d) : a,b,c,d \in A\}| > \frac{q}{2}. \] Any $\delta q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. Our proof is based on a qualitatively optimal characterisation of sets $A,X \subseteq \mathbb{F}_q$ for which the number of solutions to the equation \[ (a_1-a_2) = x (a_3-a_4) \, , \; a_1,a_2, a_3, a_4 \in A, x \in X \] is nearly maximum. A key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. We also prove a stronger statement for \[ (A-B)(C-D) = \{ (a -b) (c-d) : a \in A, b \in B, c \in C, d \in D\} \] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信