{"title":"一个根据非正统蝾螈卵泡数量估算最终离合器大小的模型","authors":"J. Howard, J. Maerz","doi":"10.1670/21-015","DOIUrl":null,"url":null,"abstract":"Abstract. Estimates of clutch sizes are essential for modeling population dynamics, yet for many species of amphibian, clutches can be difficult to observe or methodologically problematic to measure. Clutch sizes for direct-developing Plethodontidae are regularly estimated from counts of ovarian follicles. Because many more follicles begin to develop in an ovary than will ultimately reach full size and be deposited, follicle counts change dramatically over an individual female's follicle development cycle, and a high level of subjectivity is inherent in the process of estimating clutch sizes from follicle counts. Many published studies are not transparent in how they determine clutch sizes from follicle counts. Some investigators address this bias using threshold sizes or other characteristics to separate those follicles that will ultimately mature and be deposited from those that will not, but our experience indicates that such approaches still likely overestimate clutch sizes. To move beyond the subjectivity inherent in estimation of final clutch size from follicle counts, we modeled large Plethodon clutch size as a function of female body size (snout–vent length, SVL) and follicle diameter, then used that model to predict the likely number of mature eggs deposited. We propose that this approach provides reasonable estimates of clutch sizes and variances for use in demographic models.","PeriodicalId":54821,"journal":{"name":"Journal of Herpetology","volume":"56 1","pages":"191 - 195"},"PeriodicalIF":0.8000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Estimating Final Clutch Size from Follicle Counts in Plethodontid Salamanders\",\"authors\":\"J. Howard, J. Maerz\",\"doi\":\"10.1670/21-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Estimates of clutch sizes are essential for modeling population dynamics, yet for many species of amphibian, clutches can be difficult to observe or methodologically problematic to measure. Clutch sizes for direct-developing Plethodontidae are regularly estimated from counts of ovarian follicles. Because many more follicles begin to develop in an ovary than will ultimately reach full size and be deposited, follicle counts change dramatically over an individual female's follicle development cycle, and a high level of subjectivity is inherent in the process of estimating clutch sizes from follicle counts. Many published studies are not transparent in how they determine clutch sizes from follicle counts. Some investigators address this bias using threshold sizes or other characteristics to separate those follicles that will ultimately mature and be deposited from those that will not, but our experience indicates that such approaches still likely overestimate clutch sizes. To move beyond the subjectivity inherent in estimation of final clutch size from follicle counts, we modeled large Plethodon clutch size as a function of female body size (snout–vent length, SVL) and follicle diameter, then used that model to predict the likely number of mature eggs deposited. We propose that this approach provides reasonable estimates of clutch sizes and variances for use in demographic models.\",\"PeriodicalId\":54821,\"journal\":{\"name\":\"Journal of Herpetology\",\"volume\":\"56 1\",\"pages\":\"191 - 195\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Herpetology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1670/21-015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Herpetology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1670/21-015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
A Model for Estimating Final Clutch Size from Follicle Counts in Plethodontid Salamanders
Abstract. Estimates of clutch sizes are essential for modeling population dynamics, yet for many species of amphibian, clutches can be difficult to observe or methodologically problematic to measure. Clutch sizes for direct-developing Plethodontidae are regularly estimated from counts of ovarian follicles. Because many more follicles begin to develop in an ovary than will ultimately reach full size and be deposited, follicle counts change dramatically over an individual female's follicle development cycle, and a high level of subjectivity is inherent in the process of estimating clutch sizes from follicle counts. Many published studies are not transparent in how they determine clutch sizes from follicle counts. Some investigators address this bias using threshold sizes or other characteristics to separate those follicles that will ultimately mature and be deposited from those that will not, but our experience indicates that such approaches still likely overestimate clutch sizes. To move beyond the subjectivity inherent in estimation of final clutch size from follicle counts, we modeled large Plethodon clutch size as a function of female body size (snout–vent length, SVL) and follicle diameter, then used that model to predict the likely number of mature eggs deposited. We propose that this approach provides reasonable estimates of clutch sizes and variances for use in demographic models.
期刊介绍:
The Journal of Herpetology accepts manuscripts on all aspects on the biology of amphibians and reptiles including their behavior, conservation, ecology, morphology, physiology, and systematics, as well as herpetological education. We encourage authors to submit manuscripts that are data-driven and rigorous tests of hypotheses, or provide thorough descriptions of novel taxa (living or fossil). Topics may address theoretical issues in a thoughtful, quantitative way. Reviews and policy papers that provide new insight on the herpetological sciences are also welcome, but they must be more than simple literature reviews. These papers must have a central focus that propose a new argument for understanding a concept or a new approach for answering a question or solving a problem. Focus sections that combine papers on related topics are normally determined by the Editors. Publication in the Long-Term Perspectives section is by invitation only. Papers on captive breeding, new techniques or sampling methods, anecdotal or isolated natural history observations, geographic range extensions, and essays should be submitted to our sister journal, Herpetological Review.