超低功耗SRAM单元泄漏控制技术综述

Pavankumar Bikki, P. Karuppanan
{"title":"超低功耗SRAM单元泄漏控制技术综述","authors":"Pavankumar Bikki, P. Karuppanan","doi":"10.4236/CS.2017.82003","DOIUrl":null,"url":null,"abstract":"Low power supply operation with leakage power reduction is the prime concern in modern nano-scale CMOS memory devices. In the present scenario, low leakage memory architecture becomes more challenging, as it has 30% of the total chip power consumption. Since, the SRAM cell is low in density and most of memory processing data remain stable during the data holding operation, the stored memory data are more affected by the leakage phenomena in the circuit while the device parameters are scaled down. In this survey, origins of leakage currents in a short-channel device and various leakage control techniques for ultra-low power SRAM design are discussed. A classification of these approaches made based on their key design and functions, such as biasing technique, power gating and multi-threshold techniques. Based on our survey, we summarize the merits and demerits and challenges of these techniques. This comprehensive study will be helpful to extend the further research for future implementations.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":"08 1","pages":"720-726"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"SRAM Cell Leakage Control Techniques for Ultra Low Power Application: A Survey\",\"authors\":\"Pavankumar Bikki, P. Karuppanan\",\"doi\":\"10.4236/CS.2017.82003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low power supply operation with leakage power reduction is the prime concern in modern nano-scale CMOS memory devices. In the present scenario, low leakage memory architecture becomes more challenging, as it has 30% of the total chip power consumption. Since, the SRAM cell is low in density and most of memory processing data remain stable during the data holding operation, the stored memory data are more affected by the leakage phenomena in the circuit while the device parameters are scaled down. In this survey, origins of leakage currents in a short-channel device and various leakage control techniques for ultra-low power SRAM design are discussed. A classification of these approaches made based on their key design and functions, such as biasing technique, power gating and multi-threshold techniques. Based on our survey, we summarize the merits and demerits and challenges of these techniques. This comprehensive study will be helpful to extend the further research for future implementations.\",\"PeriodicalId\":63422,\"journal\":{\"name\":\"电路与系统(英文)\",\"volume\":\"08 1\",\"pages\":\"720-726\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/CS.2017.82003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2017.82003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在现代纳米级CMOS存储器件中,具有降低泄漏功率的低电源操作是主要关注的问题。在目前的情况下,低泄漏存储器架构变得更具挑战性,因为它占芯片总功耗的30%。由于SRAM单元密度低,并且大多数存储器处理数据在数据保持操作期间保持稳定,所以在器件参数按比例缩小的同时,存储的存储器数据更容易受到电路中的泄漏现象的影响。在本综述中,讨论了短沟道器件中泄漏电流的起源以及超低功率SRAM设计中的各种泄漏控制技术。根据这些方法的关键设计和功能,如偏置技术、功率门控和多阈值技术,对其进行了分类。基于我们的调查,我们总结了这些技术的优点、缺点和挑战。这项全面的研究将有助于为未来的实施扩展进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SRAM Cell Leakage Control Techniques for Ultra Low Power Application: A Survey
Low power supply operation with leakage power reduction is the prime concern in modern nano-scale CMOS memory devices. In the present scenario, low leakage memory architecture becomes more challenging, as it has 30% of the total chip power consumption. Since, the SRAM cell is low in density and most of memory processing data remain stable during the data holding operation, the stored memory data are more affected by the leakage phenomena in the circuit while the device parameters are scaled down. In this survey, origins of leakage currents in a short-channel device and various leakage control techniques for ultra-low power SRAM design are discussed. A classification of these approaches made based on their key design and functions, such as biasing technique, power gating and multi-threshold techniques. Based on our survey, we summarize the merits and demerits and challenges of these techniques. This comprehensive study will be helpful to extend the further research for future implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
273
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信