Haixia Yang , Guihua Yang , Hong Li , Rui Liu , Hengqiang Zhao , Ze Wei , Tina Wu , Hui Zheng , Zhifa Zheng , Zhe Yu , Aijun Wang , Jianzhong Su , Changhong Yang , Zhihong Wu
{"title":"心肌素的时空调控对非小细胞肺癌的转移至关重要","authors":"Haixia Yang , Guihua Yang , Hong Li , Rui Liu , Hengqiang Zhao , Ze Wei , Tina Wu , Hui Zheng , Zhifa Zheng , Zhe Yu , Aijun Wang , Jianzhong Su , Changhong Yang , Zhihong Wu","doi":"10.1016/j.adcanc.2022.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Myocardin is known as an important transcriptional regulator in smooth and cardiac muscle development as well as a tumor suppressor. However, the pathological function of myocardin in NSCLC metastasis is poorly understood. Here, we have described novel roles for myocardin in the metastatic cascade using in vitro and in vivo models. We demonstrate that myocardin deficiency is sufficient to trigger epithelial–mesenchymal transition (EMT) process but reduces metastatic potential of NSCLC in vivo. Myocardin deficiency reduces lung cancer metastasis because of persistent EMT and decreasing colonization capacity. Restoring myocardin expression in colonization stage promotes the metastasis of lung cancer cells. An epigenetically negative feedback loop formed by myocardin and PRMT5/MEP50 complex prevents EMT. We also uncover the unknown mechanism of myocardin suppression in lung cancer tissues that PRMT5/MEP50 complex negatively regulates myocardin expression. It helps to reconcile conflicting results that have challenged the significance of EMT and cancer metastasis and explain the phenotype of myocardin suppression in lung cancer cells.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"6 ","pages":"Article 100064"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667394022000387/pdfft?md5=0fec8c8b8c0b4e0a76b8f212adc9e57c&pid=1-s2.0-S2667394022000387-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal regulation of myocardin is essential for non-small cell lung cancer metastasis\",\"authors\":\"Haixia Yang , Guihua Yang , Hong Li , Rui Liu , Hengqiang Zhao , Ze Wei , Tina Wu , Hui Zheng , Zhifa Zheng , Zhe Yu , Aijun Wang , Jianzhong Su , Changhong Yang , Zhihong Wu\",\"doi\":\"10.1016/j.adcanc.2022.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Myocardin is known as an important transcriptional regulator in smooth and cardiac muscle development as well as a tumor suppressor. However, the pathological function of myocardin in NSCLC metastasis is poorly understood. Here, we have described novel roles for myocardin in the metastatic cascade using in vitro and in vivo models. We demonstrate that myocardin deficiency is sufficient to trigger epithelial–mesenchymal transition (EMT) process but reduces metastatic potential of NSCLC in vivo. Myocardin deficiency reduces lung cancer metastasis because of persistent EMT and decreasing colonization capacity. Restoring myocardin expression in colonization stage promotes the metastasis of lung cancer cells. An epigenetically negative feedback loop formed by myocardin and PRMT5/MEP50 complex prevents EMT. We also uncover the unknown mechanism of myocardin suppression in lung cancer tissues that PRMT5/MEP50 complex negatively regulates myocardin expression. It helps to reconcile conflicting results that have challenged the significance of EMT and cancer metastasis and explain the phenotype of myocardin suppression in lung cancer cells.</p></div>\",\"PeriodicalId\":72083,\"journal\":{\"name\":\"Advances in cancer biology - metastasis\",\"volume\":\"6 \",\"pages\":\"Article 100064\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667394022000387/pdfft?md5=0fec8c8b8c0b4e0a76b8f212adc9e57c&pid=1-s2.0-S2667394022000387-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in cancer biology - metastasis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667394022000387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer biology - metastasis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667394022000387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Spatiotemporal regulation of myocardin is essential for non-small cell lung cancer metastasis
Myocardin is known as an important transcriptional regulator in smooth and cardiac muscle development as well as a tumor suppressor. However, the pathological function of myocardin in NSCLC metastasis is poorly understood. Here, we have described novel roles for myocardin in the metastatic cascade using in vitro and in vivo models. We demonstrate that myocardin deficiency is sufficient to trigger epithelial–mesenchymal transition (EMT) process but reduces metastatic potential of NSCLC in vivo. Myocardin deficiency reduces lung cancer metastasis because of persistent EMT and decreasing colonization capacity. Restoring myocardin expression in colonization stage promotes the metastasis of lung cancer cells. An epigenetically negative feedback loop formed by myocardin and PRMT5/MEP50 complex prevents EMT. We also uncover the unknown mechanism of myocardin suppression in lung cancer tissues that PRMT5/MEP50 complex negatively regulates myocardin expression. It helps to reconcile conflicting results that have challenged the significance of EMT and cancer metastasis and explain the phenotype of myocardin suppression in lung cancer cells.