日本珍珠牡蛎Troponin C的分子克隆及组织分布

D. Funabara, Yoshinori Urakawa, S. Kanoh
{"title":"日本珍珠牡蛎Troponin C的分子克隆及组织分布","authors":"D. Funabara, Yoshinori Urakawa, S. Kanoh","doi":"10.4236/AJMB.2018.83014","DOIUrl":null,"url":null,"abstract":"Troponin is a complex of three proteins (troponin I, troponin C, and troponin T) that binds Ca2+ and is a thin filament-associated regulator of vertebrate striated muscle contraction. The function of troponin I (TnI) in vertebrates has been extensively characterized, but its role in molluscan muscles has not yet been elucidated. Our previous work suggested that the troponin C subunit has a role in adductor phasic muscle but not in catch muscle. Here, we investigated the molecular characteristics of TnI from the bivalve Japanese pearl oyster, Pinctada fucata to aid the elucidation of the function of molluscan muscle troponin. We determined the primary structure of the full-length TnI protein from the P. fucata adductor muscle (Pifuc-TnI) and found that it is composed of 286 amino acid residues with a predicted molecular weight of 33,737. Motif structure predictions and multiple sequence alignments revealed that Pifuc-TnI has a 138 residue extension at its N-terminus compared with rabbit TnI. This is analogous to characterized TnIs from other mollusks. However, unlike scallop TnI, Pifuc-TnI is predicted to contain two cAMP-dependent protein kinase phosphorylation sites, at residues 39 - 45 (RRGTEDD) and 145 - 151 (KKKSKRK). Phylogenetic analysis indicated that Pifuc-TnI and molluscan TnIs were grouped into the same clade. Pifuc-TnI gene structure predictions using Splign alignment of our obtained cDNA and genome sequences indicated that Pifuc-TnI consists of fifteen exons, with the start and stop codons located in exon 2 and exon 11, respectively. Using quantitative real-time PCR, we determined that the Pifuc-TnI gene is predominantly expressed in adductor phasic muscle, weakly in adductor catch muscle, and is not expressed in the gill, mantle or foot. These findings suggest that TnI, as a component of the troponin complex, plays a regulatory role in adductor phasic muscle contraction, but not in catch contraction.","PeriodicalId":65391,"journal":{"name":"美国分子生物学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Molecular Cloning and Tissue Distribution of Troponin C from the Japanese Pearl Oyster, Pinctada fucata\",\"authors\":\"D. Funabara, Yoshinori Urakawa, S. Kanoh\",\"doi\":\"10.4236/AJMB.2018.83014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Troponin is a complex of three proteins (troponin I, troponin C, and troponin T) that binds Ca2+ and is a thin filament-associated regulator of vertebrate striated muscle contraction. The function of troponin I (TnI) in vertebrates has been extensively characterized, but its role in molluscan muscles has not yet been elucidated. Our previous work suggested that the troponin C subunit has a role in adductor phasic muscle but not in catch muscle. Here, we investigated the molecular characteristics of TnI from the bivalve Japanese pearl oyster, Pinctada fucata to aid the elucidation of the function of molluscan muscle troponin. We determined the primary structure of the full-length TnI protein from the P. fucata adductor muscle (Pifuc-TnI) and found that it is composed of 286 amino acid residues with a predicted molecular weight of 33,737. Motif structure predictions and multiple sequence alignments revealed that Pifuc-TnI has a 138 residue extension at its N-terminus compared with rabbit TnI. This is analogous to characterized TnIs from other mollusks. However, unlike scallop TnI, Pifuc-TnI is predicted to contain two cAMP-dependent protein kinase phosphorylation sites, at residues 39 - 45 (RRGTEDD) and 145 - 151 (KKKSKRK). Phylogenetic analysis indicated that Pifuc-TnI and molluscan TnIs were grouped into the same clade. Pifuc-TnI gene structure predictions using Splign alignment of our obtained cDNA and genome sequences indicated that Pifuc-TnI consists of fifteen exons, with the start and stop codons located in exon 2 and exon 11, respectively. Using quantitative real-time PCR, we determined that the Pifuc-TnI gene is predominantly expressed in adductor phasic muscle, weakly in adductor catch muscle, and is not expressed in the gill, mantle or foot. These findings suggest that TnI, as a component of the troponin complex, plays a regulatory role in adductor phasic muscle contraction, but not in catch contraction.\",\"PeriodicalId\":65391,\"journal\":{\"name\":\"美国分子生物学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国分子生物学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/AJMB.2018.83014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分子生物学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AJMB.2018.83014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

肌钙蛋白是三种蛋白质(肌钙蛋白I、肌钙蛋白C和肌钙蛋白T)的复合物,结合Ca2+,是脊椎动物横纹肌收缩的细丝相关调节因子。肌钙蛋白I(TnI)在脊椎动物中的功能已被广泛表征,但其在软体动物肌肉中的作用尚未阐明。我们之前的研究表明,肌钙蛋白C亚基在内收肌时相肌中起作用,但在捕获肌中不起作用。在这里,我们研究了日本双壳珍珠牡蛎的TnI的分子特征,以帮助阐明软体动物肌肉肌钙蛋白的功能。我们测定了来自岩藻收合肌的全长TnI蛋白(Pifuc-TnI)的一级结构,发现它由286个氨基酸残基组成,预测分子量为33737。Motif结构预测和多序列比对显示,与兔TnI相比,Pifuc-TnI在其N末端具有138个残基的延伸。这与其他软体动物的特征TnIs相似。然而,与扇贝TnI不同,Pifuc-TnI被预测含有两个cAMP依赖性蛋白激酶磷酸化位点,分别位于残基39-45(RRGTEDD)和145-151(KKKSKRK)。系统发育分析表明,Pifuc TnI和软体动物TnI属于同一支。使用我们获得的cDNA和基因组序列的Splign比对对Pifuc-TnI基因结构进行预测表明,Pifuc-TnI由15个外显子组成,起始和终止密码子分别位于外显子2和外显子11。使用定量实时PCR,我们确定Pifuc-TnI基因主要在内收肌相肌中表达,在内收收肌捕获肌中弱表达,而在鳃、套或足中不表达。这些发现表明,TnI作为肌钙蛋白复合物的一种成分,在内收肌阶段性肌肉收缩中发挥调节作用,但在捕获收缩中不起调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Cloning and Tissue Distribution of Troponin C from the Japanese Pearl Oyster, Pinctada fucata
Troponin is a complex of three proteins (troponin I, troponin C, and troponin T) that binds Ca2+ and is a thin filament-associated regulator of vertebrate striated muscle contraction. The function of troponin I (TnI) in vertebrates has been extensively characterized, but its role in molluscan muscles has not yet been elucidated. Our previous work suggested that the troponin C subunit has a role in adductor phasic muscle but not in catch muscle. Here, we investigated the molecular characteristics of TnI from the bivalve Japanese pearl oyster, Pinctada fucata to aid the elucidation of the function of molluscan muscle troponin. We determined the primary structure of the full-length TnI protein from the P. fucata adductor muscle (Pifuc-TnI) and found that it is composed of 286 amino acid residues with a predicted molecular weight of 33,737. Motif structure predictions and multiple sequence alignments revealed that Pifuc-TnI has a 138 residue extension at its N-terminus compared with rabbit TnI. This is analogous to characterized TnIs from other mollusks. However, unlike scallop TnI, Pifuc-TnI is predicted to contain two cAMP-dependent protein kinase phosphorylation sites, at residues 39 - 45 (RRGTEDD) and 145 - 151 (KKKSKRK). Phylogenetic analysis indicated that Pifuc-TnI and molluscan TnIs were grouped into the same clade. Pifuc-TnI gene structure predictions using Splign alignment of our obtained cDNA and genome sequences indicated that Pifuc-TnI consists of fifteen exons, with the start and stop codons located in exon 2 and exon 11, respectively. Using quantitative real-time PCR, we determined that the Pifuc-TnI gene is predominantly expressed in adductor phasic muscle, weakly in adductor catch muscle, and is not expressed in the gill, mantle or foot. These findings suggest that TnI, as a component of the troponin complex, plays a regulatory role in adductor phasic muscle contraction, but not in catch contraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
188
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信