收缩期心力衰竭脑血流速率自动调节机制相互作用的计算模拟

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Surhan Bozkurt, U. E. Ayten
{"title":"收缩期心力衰竭脑血流速率自动调节机制相互作用的计算模拟","authors":"Surhan Bozkurt, U. E. Ayten","doi":"10.1142/s0218339023500043","DOIUrl":null,"url":null,"abstract":"In this study, a lumped parameter model which includes systemic circulation, cerebral blood vessels, systemic arteriolar resistance control, heart rate control, cerebral autoregulation mechanisms and cerebral CO2 reactivity was developed to simulate healthy and heart failure conditions. In the healthy cardiovascular system model, the results were obtained with all control mechanisms connected to the model. Whilst heart failure cases were simulated, all control mechanisms were removed from the model. Then, cerebral autoregulation and cerebral CO2 reactivity mechanisms were connected to the model. Lastly, systemic arteriolar resistance and heart rate control mechanisms were connected to the model. Also, Monte Carlo Analysis was performed to determine the range of parameters controlled for simulations of healthy and heart failure conditions. The results showed that blood flow rate in cerebral circulation can be simulated more accurately by modeling interaction among autoregulatory mechanisms rather than studying separately.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPUTATIONAL SIMULATION OF THE INTERACTION AMONG AUTOREGULATION MECHANISMS REGULATING CEREBRAL BLOOD FLOW RATE IN SYSTOLIC HEART FAILURE\",\"authors\":\"Surhan Bozkurt, U. E. Ayten\",\"doi\":\"10.1142/s0218339023500043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a lumped parameter model which includes systemic circulation, cerebral blood vessels, systemic arteriolar resistance control, heart rate control, cerebral autoregulation mechanisms and cerebral CO2 reactivity was developed to simulate healthy and heart failure conditions. In the healthy cardiovascular system model, the results were obtained with all control mechanisms connected to the model. Whilst heart failure cases were simulated, all control mechanisms were removed from the model. Then, cerebral autoregulation and cerebral CO2 reactivity mechanisms were connected to the model. Lastly, systemic arteriolar resistance and heart rate control mechanisms were connected to the model. Also, Monte Carlo Analysis was performed to determine the range of parameters controlled for simulations of healthy and heart failure conditions. The results showed that blood flow rate in cerebral circulation can be simulated more accurately by modeling interaction among autoregulatory mechanisms rather than studying separately.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339023500043\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了包括体循环、脑血管、全身小动脉阻力控制、心率控制、脑自动调节机制和脑CO2反应性在内的集总参数模型,模拟健康和心力衰竭情况。在健康心血管系统模型中,所有的控制机制都与模型相关。在模拟心力衰竭病例时,从模型中删除了所有控制机制。然后,将脑自动调节和脑CO2反应机制与模型联系起来。最后,将全身动脉阻力和心率控制机制与模型联系起来。此外,还进行了蒙特卡罗分析,以确定用于模拟健康和心力衰竭状况的控制参数范围。结果表明,与单独研究脑循环血流速率相比,通过相互作用的模型来模拟脑循环血流速率更为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPUTATIONAL SIMULATION OF THE INTERACTION AMONG AUTOREGULATION MECHANISMS REGULATING CEREBRAL BLOOD FLOW RATE IN SYSTOLIC HEART FAILURE
In this study, a lumped parameter model which includes systemic circulation, cerebral blood vessels, systemic arteriolar resistance control, heart rate control, cerebral autoregulation mechanisms and cerebral CO2 reactivity was developed to simulate healthy and heart failure conditions. In the healthy cardiovascular system model, the results were obtained with all control mechanisms connected to the model. Whilst heart failure cases were simulated, all control mechanisms were removed from the model. Then, cerebral autoregulation and cerebral CO2 reactivity mechanisms were connected to the model. Lastly, systemic arteriolar resistance and heart rate control mechanisms were connected to the model. Also, Monte Carlo Analysis was performed to determine the range of parameters controlled for simulations of healthy and heart failure conditions. The results showed that blood flow rate in cerebral circulation can be simulated more accurately by modeling interaction among autoregulatory mechanisms rather than studying separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信