Wenhao Wu, Li Jiang, Bangchu Yang, Kening Gong, Chunhao Peng, Tianbao He
{"title":"一种新的上肢假肢系统肌电分解框架","authors":"Wenhao Wu, Li Jiang, Bangchu Yang, Kening Gong, Chunhao Peng, Tianbao He","doi":"10.1007/s42235-023-00407-0","DOIUrl":null,"url":null,"abstract":"<div><p>Neural interfaces based on surface Electromyography (EMG) decomposition have been widely used in upper limb prosthetic systems. In the current EMG decomposition framework, most Blind Source Separation (BSS) algorithms require EMG with a large number of channels (generally larger than 64) as input, while users of prosthetic limbs can generally only provide less skin surface for electrode placement than healthy people. We performed decomposition tests to demonstrate the performance of the new framework with the simulated EMG signal. The results show that the new framework identified more Motor Units (MUs) compared to the control group and it is suitable for decomposing EMG signals with low channel numbers. In order to verify the application value of the new framework in the upper limb prosthesis system, we tested its performance in decomposing experimental EMG signals in force fitting experiments as well as pattern recognition experiments. The average Pearson coefficient between the fitted finger forces and the ground truth forces is 0.9079 and the average accuracy of gesture classification is 95.11%. The results show that the decomposition results obtained by the new framework can be used in the control of the upper limb prosthesis while only requiring EMG signals with fewer channels.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"20 6","pages":"2646 - 2660"},"PeriodicalIF":4.9000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New EMG Decomposition Framework for Upper Limb Prosthetic Systems\",\"authors\":\"Wenhao Wu, Li Jiang, Bangchu Yang, Kening Gong, Chunhao Peng, Tianbao He\",\"doi\":\"10.1007/s42235-023-00407-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neural interfaces based on surface Electromyography (EMG) decomposition have been widely used in upper limb prosthetic systems. In the current EMG decomposition framework, most Blind Source Separation (BSS) algorithms require EMG with a large number of channels (generally larger than 64) as input, while users of prosthetic limbs can generally only provide less skin surface for electrode placement than healthy people. We performed decomposition tests to demonstrate the performance of the new framework with the simulated EMG signal. The results show that the new framework identified more Motor Units (MUs) compared to the control group and it is suitable for decomposing EMG signals with low channel numbers. In order to verify the application value of the new framework in the upper limb prosthesis system, we tested its performance in decomposing experimental EMG signals in force fitting experiments as well as pattern recognition experiments. The average Pearson coefficient between the fitted finger forces and the ground truth forces is 0.9079 and the average accuracy of gesture classification is 95.11%. The results show that the decomposition results obtained by the new framework can be used in the control of the upper limb prosthesis while only requiring EMG signals with fewer channels.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"20 6\",\"pages\":\"2646 - 2660\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-023-00407-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-023-00407-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A New EMG Decomposition Framework for Upper Limb Prosthetic Systems
Neural interfaces based on surface Electromyography (EMG) decomposition have been widely used in upper limb prosthetic systems. In the current EMG decomposition framework, most Blind Source Separation (BSS) algorithms require EMG with a large number of channels (generally larger than 64) as input, while users of prosthetic limbs can generally only provide less skin surface for electrode placement than healthy people. We performed decomposition tests to demonstrate the performance of the new framework with the simulated EMG signal. The results show that the new framework identified more Motor Units (MUs) compared to the control group and it is suitable for decomposing EMG signals with low channel numbers. In order to verify the application value of the new framework in the upper limb prosthesis system, we tested its performance in decomposing experimental EMG signals in force fitting experiments as well as pattern recognition experiments. The average Pearson coefficient between the fitted finger forces and the ground truth forces is 0.9079 and the average accuracy of gesture classification is 95.11%. The results show that the decomposition results obtained by the new framework can be used in the control of the upper limb prosthesis while only requiring EMG signals with fewer channels.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.