{"title":"诊断SARS - CoV - 2感染的新型光子方法","authors":"Naveen Joshi, Shubhangi Shukla, Roger J Narayan","doi":"10.1002/tbio.202200001","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic that began in March 2020 continues in many countries. The ongoing pandemic makes early diagnosis a crucial part of efforts to prevent the spread of SARS-CoV-2 infections. As such, the development of a rapid, reliable, and low-cost technique with increased sensitivity for detection of SARS-CoV-2 is an important priority of the scientific community. At present, nucleic acid-based techniques are primarily used as the reference approach for the detection of SARS-CoV-2 infection. However, in several cases, false positive results have been observed with these techniques. Due to the drawbacks associated with existing techniques, the development of new techniques for the diagnosis of COVID-19 is an important research activity. We provide an overview of novel diagnostic methods for SARS-CoV-2 diagnosis that integrate photonic technology with artificial intelligence. Recent developments in emerging diagnostic techniques based on the principles of advanced molecular spectroscopy and microscopy are considered.</p>","PeriodicalId":75242,"journal":{"name":"Translational biophotonics","volume":" ","pages":"e202200001"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel photonic methods for diagnosis of SARS-CoV-2 infection.\",\"authors\":\"Naveen Joshi, Shubhangi Shukla, Roger J Narayan\",\"doi\":\"10.1002/tbio.202200001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic that began in March 2020 continues in many countries. The ongoing pandemic makes early diagnosis a crucial part of efforts to prevent the spread of SARS-CoV-2 infections. As such, the development of a rapid, reliable, and low-cost technique with increased sensitivity for detection of SARS-CoV-2 is an important priority of the scientific community. At present, nucleic acid-based techniques are primarily used as the reference approach for the detection of SARS-CoV-2 infection. However, in several cases, false positive results have been observed with these techniques. Due to the drawbacks associated with existing techniques, the development of new techniques for the diagnosis of COVID-19 is an important research activity. We provide an overview of novel diagnostic methods for SARS-CoV-2 diagnosis that integrate photonic technology with artificial intelligence. Recent developments in emerging diagnostic techniques based on the principles of advanced molecular spectroscopy and microscopy are considered.</p>\",\"PeriodicalId\":75242,\"journal\":{\"name\":\"Translational biophotonics\",\"volume\":\" \",\"pages\":\"e202200001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/tbio.202200001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tbio.202200001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Novel photonic methods for diagnosis of SARS-CoV-2 infection.
The COVID-19 pandemic that began in March 2020 continues in many countries. The ongoing pandemic makes early diagnosis a crucial part of efforts to prevent the spread of SARS-CoV-2 infections. As such, the development of a rapid, reliable, and low-cost technique with increased sensitivity for detection of SARS-CoV-2 is an important priority of the scientific community. At present, nucleic acid-based techniques are primarily used as the reference approach for the detection of SARS-CoV-2 infection. However, in several cases, false positive results have been observed with these techniques. Due to the drawbacks associated with existing techniques, the development of new techniques for the diagnosis of COVID-19 is an important research activity. We provide an overview of novel diagnostic methods for SARS-CoV-2 diagnosis that integrate photonic technology with artificial intelligence. Recent developments in emerging diagnostic techniques based on the principles of advanced molecular spectroscopy and microscopy are considered.