Mohammad Hasan Taheri , Nematollah Askari , Yaning Feng , Malikeh Nabaei , Mohammad S. Islam , Ali Farnoud , Xinguang Cui
{"title":"旋流和毛细管直径对活性干粉吸入器性能的影响","authors":"Mohammad Hasan Taheri , Nematollah Askari , Yaning Feng , Malikeh Nabaei , Mohammad S. Islam , Ali Farnoud , Xinguang Cui","doi":"10.1016/j.medntd.2023.100240","DOIUrl":null,"url":null,"abstract":"<div><p>For patients with lung disease, dry powder inhalers (DPI) are profoundly beneficial. The current study introduces and develops a series of dry powder inhalers (DPIs). A capsule-based (size 0) active DPI was considered. The study aims to investigate whether swirling flow and outlet capillary diameter (d<sub>c_out</sub>) affect the percentage of emitted doses (ED) released from the capsule. Spiral vanes were added to the capillary inlet to produce a swirling flow. Computational fluid dynamics (CFD) was applied to simulate the problem. The results were compared with previous in vitro and numerical studies to validate the results. Based on the derived results, the small swirl parameter (SP) enhances the secondary flow and recirculation zone. It increases the central jet flow, which increases the ED value by about 5–20% compared to no-swirl flow. However, as the airflow rate increases, the recirculation zone enlarges, vorticities become dominant, and asymmetrical flow patterns emerge. Consequently, ED % drops significantly (more than 50%). As d<sub>c_out</sub> decreases, the vorticities around the outlet capillary become more potent, which is undesirable. Indeed, the emptying of the capsule does not happen ideally. The research provides a perspective on the device's design and DPI performance.</p></div>","PeriodicalId":33783,"journal":{"name":"Medicine in Novel Technology and Devices","volume":"18 ","pages":"Article 100240"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swirling flow and capillary diameter effect on the performance of an active dry powder inhalers\",\"authors\":\"Mohammad Hasan Taheri , Nematollah Askari , Yaning Feng , Malikeh Nabaei , Mohammad S. Islam , Ali Farnoud , Xinguang Cui\",\"doi\":\"10.1016/j.medntd.2023.100240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For patients with lung disease, dry powder inhalers (DPI) are profoundly beneficial. The current study introduces and develops a series of dry powder inhalers (DPIs). A capsule-based (size 0) active DPI was considered. The study aims to investigate whether swirling flow and outlet capillary diameter (d<sub>c_out</sub>) affect the percentage of emitted doses (ED) released from the capsule. Spiral vanes were added to the capillary inlet to produce a swirling flow. Computational fluid dynamics (CFD) was applied to simulate the problem. The results were compared with previous in vitro and numerical studies to validate the results. Based on the derived results, the small swirl parameter (SP) enhances the secondary flow and recirculation zone. It increases the central jet flow, which increases the ED value by about 5–20% compared to no-swirl flow. However, as the airflow rate increases, the recirculation zone enlarges, vorticities become dominant, and asymmetrical flow patterns emerge. Consequently, ED % drops significantly (more than 50%). As d<sub>c_out</sub> decreases, the vorticities around the outlet capillary become more potent, which is undesirable. Indeed, the emptying of the capsule does not happen ideally. The research provides a perspective on the device's design and DPI performance.</p></div>\",\"PeriodicalId\":33783,\"journal\":{\"name\":\"Medicine in Novel Technology and Devices\",\"volume\":\"18 \",\"pages\":\"Article 100240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine in Novel Technology and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590093523000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Novel Technology and Devices","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590093523000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Swirling flow and capillary diameter effect on the performance of an active dry powder inhalers
For patients with lung disease, dry powder inhalers (DPI) are profoundly beneficial. The current study introduces and develops a series of dry powder inhalers (DPIs). A capsule-based (size 0) active DPI was considered. The study aims to investigate whether swirling flow and outlet capillary diameter (dc_out) affect the percentage of emitted doses (ED) released from the capsule. Spiral vanes were added to the capillary inlet to produce a swirling flow. Computational fluid dynamics (CFD) was applied to simulate the problem. The results were compared with previous in vitro and numerical studies to validate the results. Based on the derived results, the small swirl parameter (SP) enhances the secondary flow and recirculation zone. It increases the central jet flow, which increases the ED value by about 5–20% compared to no-swirl flow. However, as the airflow rate increases, the recirculation zone enlarges, vorticities become dominant, and asymmetrical flow patterns emerge. Consequently, ED % drops significantly (more than 50%). As dc_out decreases, the vorticities around the outlet capillary become more potent, which is undesirable. Indeed, the emptying of the capsule does not happen ideally. The research provides a perspective on the device's design and DPI performance.