在风电高度参与的情况下,水电热协调的日前机组承诺

IF 1.6 Q4 ENERGY & FUELS
Jorge Zuluaga, Carlos E. Murillo-Sanchez, Ricardo Moreno-Chuquen, Harold R. Chamorro, Vijay K. Sood
{"title":"在风电高度参与的情况下,水电热协调的日前机组承诺","authors":"Jorge Zuluaga,&nbsp;Carlos E. Murillo-Sanchez,&nbsp;Ricardo Moreno-Chuquen,&nbsp;Harold R. Chamorro,&nbsp;Vijay K. Sood","doi":"10.1049/esi2.12078","DOIUrl":null,"url":null,"abstract":"<p>The variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day-ahead multi-period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in order to ensure an optimal power flow minimising the generation cost. A progressive hedging approach has been proposed and developed to solve efficiently the unit commitment problem as a two-stage stochastic programming problem to update each stage in parallel. The performance of progressive hedging is compared with a standard mixed-integer linear programming problem. The results indicate that the computation time is 50 times faster than standard mixed-integer linear programming. The test case system is based on a reduced version of the interconnected Colombian system. The comparative results indicate an important reduction in computational time.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 2","pages":"119-127"},"PeriodicalIF":1.6000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12078","citationCount":"0","resultStr":"{\"title\":\"Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power\",\"authors\":\"Jorge Zuluaga,&nbsp;Carlos E. Murillo-Sanchez,&nbsp;Ricardo Moreno-Chuquen,&nbsp;Harold R. Chamorro,&nbsp;Vijay K. Sood\",\"doi\":\"10.1049/esi2.12078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day-ahead multi-period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in order to ensure an optimal power flow minimising the generation cost. A progressive hedging approach has been proposed and developed to solve efficiently the unit commitment problem as a two-stage stochastic programming problem to update each stage in parallel. The performance of progressive hedging is compared with a standard mixed-integer linear programming problem. The results indicate that the computation time is 50 times faster than standard mixed-integer linear programming. The test case system is based on a reduced version of the interconnected Colombian system. The comparative results indicate an important reduction in computational time.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"5 2\",\"pages\":\"119-127\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源的可变性和不确定性给发电机组的机组承诺相关的运行规划带来了新的挑战。风电一体化下的日前多时段最优潮流的发展需要对多个场景进行建模,以保证发电成本最小的最优潮流。提出并发展了一种渐进式套期保值方法,将机组承诺问题作为一个两阶段随机规划问题有效地求解,以并行更新每一阶段。将渐进式套期保值的性能与标准的混合整数线性规划问题进行了比较。结果表明,该方法的计算速度是标准混合整数线性规划的50倍。测试用例系统基于相互连接的哥伦比亚系统的简化版本。对比结果表明,计算时间大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power

Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power

The variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day-ahead multi-period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in order to ensure an optimal power flow minimising the generation cost. A progressive hedging approach has been proposed and developed to solve efficiently the unit commitment problem as a two-stage stochastic programming problem to update each stage in parallel. The performance of progressive hedging is compared with a standard mixed-integer linear programming problem. The results indicate that the computation time is 50 times faster than standard mixed-integer linear programming. The test case system is based on a reduced version of the interconnected Colombian system. The comparative results indicate an important reduction in computational time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信