MATLAB中的粒子图像测速:PIVlab中的精度和增强算法

Q1 Social Sciences
William Thielicke, René Sonntag
{"title":"MATLAB中的粒子图像测速:PIVlab中的精度和增强算法","authors":"William Thielicke, René Sonntag","doi":"10.5334/JORS.334","DOIUrl":null,"url":null,"abstract":"PIVlab is a free toolbox and app for MATLAB ® . It is used to perform Particle Image Velocimetry (PIV) with image data: A light sheet illuminates particles that are suspended in a fluid. A digital camera records a series of images of the illuminated particles. The input images are divided into sub-images (interrogation areas), and for each of these, a cross-correlation is performed. The resulting correlation matrix is used to estimate the most probable displacement within each interrogation area. PIV is extensively used for flow analyses where a thin laser sheet illuminates suspended particles in the fluid, but also for other moving textures, like cell migration or ultrasonic images. This paper presents several improvements that were implemented in PIVlab, enhancing the robustness of displacement estimates. The benefit of these improvements is evaluated using experimental images and synthetic images of particle and non-particle textures. Linear correlation and repeated correlation increase the robustness and decrease bias and root-mean-square (RMS) error of the displacement estimates. Particle images have a significantly lower bias and RMS error than non-particle images.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"291","resultStr":"{\"title\":\"Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab\",\"authors\":\"William Thielicke, René Sonntag\",\"doi\":\"10.5334/JORS.334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PIVlab is a free toolbox and app for MATLAB ® . It is used to perform Particle Image Velocimetry (PIV) with image data: A light sheet illuminates particles that are suspended in a fluid. A digital camera records a series of images of the illuminated particles. The input images are divided into sub-images (interrogation areas), and for each of these, a cross-correlation is performed. The resulting correlation matrix is used to estimate the most probable displacement within each interrogation area. PIV is extensively used for flow analyses where a thin laser sheet illuminates suspended particles in the fluid, but also for other moving textures, like cell migration or ultrasonic images. This paper presents several improvements that were implemented in PIVlab, enhancing the robustness of displacement estimates. The benefit of these improvements is evaluated using experimental images and synthetic images of particle and non-particle textures. Linear correlation and repeated correlation increase the robustness and decrease bias and root-mean-square (RMS) error of the displacement estimates. Particle images have a significantly lower bias and RMS error than non-particle images.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"291\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/JORS.334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/JORS.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 291

摘要

PIVlab是MATLAB®的免费工具箱和应用程序。它用于使用图像数据执行粒子图像测速(PIV):一张灯片照亮悬浮在流体中的粒子。数码相机记录了一系列被照亮的粒子的图像。输入图像被划分为子图像(查询区域),并对每个子图像执行相互关联。得到的相关矩阵用于估计每个审讯区域内最可能的位移。PIV广泛用于流动分析,其中薄激光片照亮流体中的悬浮颗粒,但也用于其他移动纹理,如细胞迁移或超声波图像。本文介绍了在PIVlab中实现的几个改进,增强了位移估计的鲁棒性。这些改进的好处是评估使用实验图像和合成图像的颗粒和非颗粒纹理。线性相关和重复相关增加了位移估计的鲁棒性,减小了偏差和均方根误差。粒子图像的偏置和均方根误差明显低于非粒子图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab
PIVlab is a free toolbox and app for MATLAB ® . It is used to perform Particle Image Velocimetry (PIV) with image data: A light sheet illuminates particles that are suspended in a fluid. A digital camera records a series of images of the illuminated particles. The input images are divided into sub-images (interrogation areas), and for each of these, a cross-correlation is performed. The resulting correlation matrix is used to estimate the most probable displacement within each interrogation area. PIV is extensively used for flow analyses where a thin laser sheet illuminates suspended particles in the fluid, but also for other moving textures, like cell migration or ultrasonic images. This paper presents several improvements that were implemented in PIVlab, enhancing the robustness of displacement estimates. The benefit of these improvements is evaluated using experimental images and synthetic images of particle and non-particle textures. Linear correlation and repeated correlation increase the robustness and decrease bias and root-mean-square (RMS) error of the displacement estimates. Particle images have a significantly lower bias and RMS error than non-particle images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信