Hadamard空间离散秩一等距群轨道点的均分与计数

IF 0.8 Q2 MATHEMATICS
G. Link
{"title":"Hadamard空间离散秩一等距群轨道点的均分与计数","authors":"G. Link","doi":"10.2140/tunis.2020.2.791","DOIUrl":null,"url":null,"abstract":"Let $X$ be a proper, geodesically complete Hadamard space, and $\\ \\Gamma<\\mbox{Is}(X)$ a discrete subgroup of isometries of $X$ with the fixed point of a rank one isometry of $X$ in its infinite limit set. In this paper we prove that if $\\Gamma$ has non-arithmetic length spectrum, then the Ricks' Bowen-Margulis measure -- which generalizes the well-known Bowen-Margulis measure in the CAT$(-1)$ setting -- is mixing. If in addition the Ricks' Bowen-Margulis measure is finite, then we also have equidistribution of $\\Gamma$-orbit points in $X$, which in particular yields an asymptotic estimate for the orbit counting function of $\\Gamma$. This generalizes well-known facts for non-elementary discrete isometry groups of Hadamard manifolds with pinched negative curvature and proper CAT$(-1)$-spaces.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.791","citationCount":"10","resultStr":"{\"title\":\"Equidistribution and counting of orbit points for discrete rank one isometry groups of Hadamard spaces\",\"authors\":\"G. Link\",\"doi\":\"10.2140/tunis.2020.2.791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a proper, geodesically complete Hadamard space, and $\\\\ \\\\Gamma<\\\\mbox{Is}(X)$ a discrete subgroup of isometries of $X$ with the fixed point of a rank one isometry of $X$ in its infinite limit set. In this paper we prove that if $\\\\Gamma$ has non-arithmetic length spectrum, then the Ricks' Bowen-Margulis measure -- which generalizes the well-known Bowen-Margulis measure in the CAT$(-1)$ setting -- is mixing. If in addition the Ricks' Bowen-Margulis measure is finite, then we also have equidistribution of $\\\\Gamma$-orbit points in $X$, which in particular yields an asymptotic estimate for the orbit counting function of $\\\\Gamma$. This generalizes well-known facts for non-elementary discrete isometry groups of Hadamard manifolds with pinched negative curvature and proper CAT$(-1)$-spaces.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2020.2.791\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2020.2.791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

设$X$是一个固有的、测地完备的Hadamard空间,$\ \Gamma<\mbox{Is}(X)$是$X$等距的离散子群,其无限极限集中$X$的一个秩一等距的不动点。在本文中,我们证明了如果$\Gamma$具有非算术长度谱,那么Ricks' Bowen-Margulis测度——它推广了CAT$(-1)$设置中的著名的Bowen-Margulis测度——是混合的。另外,如果Ricks' bowwen - margulis测度是有限的,那么我们也有$\Gamma$-轨道点在$X$上的均匀分布,这特别地产生了$\Gamma$的轨道计数函数的渐近估计。这推广了具有缩紧负曲率和固有CAT$(-1)$-空间的非初等离散Hadamard流形等距群的已知事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equidistribution and counting of orbit points for discrete rank one isometry groups of Hadamard spaces
Let $X$ be a proper, geodesically complete Hadamard space, and $\ \Gamma<\mbox{Is}(X)$ a discrete subgroup of isometries of $X$ with the fixed point of a rank one isometry of $X$ in its infinite limit set. In this paper we prove that if $\Gamma$ has non-arithmetic length spectrum, then the Ricks' Bowen-Margulis measure -- which generalizes the well-known Bowen-Margulis measure in the CAT$(-1)$ setting -- is mixing. If in addition the Ricks' Bowen-Margulis measure is finite, then we also have equidistribution of $\Gamma$-orbit points in $X$, which in particular yields an asymptotic estimate for the orbit counting function of $\Gamma$. This generalizes well-known facts for non-elementary discrete isometry groups of Hadamard manifolds with pinched negative curvature and proper CAT$(-1)$-spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信