基于深度学习的汽车系统多部件故障检测

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
John O'Donnell, Hwan-Sik Yoon
{"title":"基于深度学习的汽车系统多部件故障检测","authors":"John O'Donnell, Hwan-Sik Yoon","doi":"10.1115/1.4063003","DOIUrl":null,"url":null,"abstract":"\n The connectivity of modern vehicles allows for the monitoring and analysis of a large amount of sensor data from vehicles during their normal operations. In recent years, there has been a growing interest in utilizing this data for the purposes of predictive maintenance. In this paper, a multi-label transfer learning approach is proposed using fourteen different pretrained classifier models retrained with engine simulation data to predict the failure conditions of a selected set of engine components. The retrained classifiers are designed such that the failure modes, including multimode failure, of an EGR, Compressor, Intercooler, and Fuel Injectors of a four-cylinder diesel engine can be identified. Time-series simulation data of various failure conditions, which includes performance degradation, is generated to retrain the classifier models to predict which components are failing at any given time. The test results of the retrained classifier models show that the overall classification performance is good, with the value of mean average precision varying from 0.7 to 0.75 for most retrained networks. To the best of the authors' knowledge, this work represents the first attempt to characterize such time-series data utilizing a multi-label deep learning approach.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Multi-Component Failure in Automotive System using Deep Learning\",\"authors\":\"John O'Donnell, Hwan-Sik Yoon\",\"doi\":\"10.1115/1.4063003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The connectivity of modern vehicles allows for the monitoring and analysis of a large amount of sensor data from vehicles during their normal operations. In recent years, there has been a growing interest in utilizing this data for the purposes of predictive maintenance. In this paper, a multi-label transfer learning approach is proposed using fourteen different pretrained classifier models retrained with engine simulation data to predict the failure conditions of a selected set of engine components. The retrained classifiers are designed such that the failure modes, including multimode failure, of an EGR, Compressor, Intercooler, and Fuel Injectors of a four-cylinder diesel engine can be identified. Time-series simulation data of various failure conditions, which includes performance degradation, is generated to retrain the classifier models to predict which components are failing at any given time. The test results of the retrained classifier models show that the overall classification performance is good, with the value of mean average precision varying from 0.7 to 0.75 for most retrained networks. To the best of the authors' knowledge, this work represents the first attempt to characterize such time-series data utilizing a multi-label deep learning approach.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063003\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

现代车辆的连接性允许在车辆正常运行期间监控和分析来自车辆的大量传感器数据。近年来,人们对利用这些数据进行预测性维护的兴趣日益浓厚。本文提出了一种多标签迁移学习方法,使用14种不同的预训练分类器模型和发动机仿真数据进行再训练,以预测一组选定的发动机部件的故障情况。经过重新训练的分类器可以识别四缸柴油发动机的EGR、压缩机、中冷器和燃油喷射器的故障模式,包括多模式故障。生成各种故障条件(包括性能下降)的时间序列模拟数据,以重新训练分类器模型,以预测在任何给定时间哪些组件发生故障。再训练分类器模型的测试结果表明,总体分类性能良好,大多数再训练网络的平均精度在0.7 ~ 0.75之间。据作者所知,这项工作代表了利用多标签深度学习方法表征此类时间序列数据的首次尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Multi-Component Failure in Automotive System using Deep Learning
The connectivity of modern vehicles allows for the monitoring and analysis of a large amount of sensor data from vehicles during their normal operations. In recent years, there has been a growing interest in utilizing this data for the purposes of predictive maintenance. In this paper, a multi-label transfer learning approach is proposed using fourteen different pretrained classifier models retrained with engine simulation data to predict the failure conditions of a selected set of engine components. The retrained classifiers are designed such that the failure modes, including multimode failure, of an EGR, Compressor, Intercooler, and Fuel Injectors of a four-cylinder diesel engine can be identified. Time-series simulation data of various failure conditions, which includes performance degradation, is generated to retrain the classifier models to predict which components are failing at any given time. The test results of the retrained classifier models show that the overall classification performance is good, with the value of mean average precision varying from 0.7 to 0.75 for most retrained networks. To the best of the authors' knowledge, this work represents the first attempt to characterize such time-series data utilizing a multi-label deep learning approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信