Zhizhong Sun, Shujuan Zhang, Guo-yu Li, Guilong Wu, Yongzhi Liu
{"title":"青藏高原北麓河盆地高寒热岩溶湖底及其附近永久冻土的10年热状态","authors":"Zhizhong Sun, Shujuan Zhang, Guo-yu Li, Guilong Wu, Yongzhi Liu","doi":"10.1002/ppp.2107","DOIUrl":null,"url":null,"abstract":"Thermokarst lakes are distributed widely in permafrost regions on the Qinghai–Tibet Plateau (QTP), China. Better knowledge of ground thermal variability beneath and around thermokarst lakes is important for understanding future landscape development and hydrological changes. At a typical undisturbed small, shallow, alpine thermokarst lake in the Beiluhe Basin on the QTP, ground temperatures beneath and adjacent to the lake were monitored at four locations with maximum 30 m depth from the lake center to natural ground. The lake is elliptical with an area of ~700 m2 and maximum water depth of 0.6 m. Permafrost was present beneath and adjacent to the lake during the monitoring period. However, supra‐taliks were present above the permafrost table beneath the lake before monitoring of ground temperature began, but were absent around the lake. The supra‐permafrost taliks beneath the lake have thickened over time. The difference in mean permafrost table depth between the lake center and natural ground reached 5.14 m, and permafrost table depths increased beneath the lake, but changed indistinctively around the lake. Mean annual ground temperatures at different depths (5, 10, 20 and 30 m) were higher beneath the lake than around the lake, and mean increasing rates of ground temperature were also greater beneath the lake than around the lake. Ground temperature differences between the lake bottom and natural ground surface are important for understanding ground thermal patterns beneath and around thermokarst lakes.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"32 1","pages":"618 - 626"},"PeriodicalIF":3.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ppp.2107","citationCount":"1","resultStr":"{\"title\":\"A 10‐yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai–Tibet Plateau, China\",\"authors\":\"Zhizhong Sun, Shujuan Zhang, Guo-yu Li, Guilong Wu, Yongzhi Liu\",\"doi\":\"10.1002/ppp.2107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermokarst lakes are distributed widely in permafrost regions on the Qinghai–Tibet Plateau (QTP), China. Better knowledge of ground thermal variability beneath and around thermokarst lakes is important for understanding future landscape development and hydrological changes. At a typical undisturbed small, shallow, alpine thermokarst lake in the Beiluhe Basin on the QTP, ground temperatures beneath and adjacent to the lake were monitored at four locations with maximum 30 m depth from the lake center to natural ground. The lake is elliptical with an area of ~700 m2 and maximum water depth of 0.6 m. Permafrost was present beneath and adjacent to the lake during the monitoring period. However, supra‐taliks were present above the permafrost table beneath the lake before monitoring of ground temperature began, but were absent around the lake. The supra‐permafrost taliks beneath the lake have thickened over time. The difference in mean permafrost table depth between the lake center and natural ground reached 5.14 m, and permafrost table depths increased beneath the lake, but changed indistinctively around the lake. Mean annual ground temperatures at different depths (5, 10, 20 and 30 m) were higher beneath the lake than around the lake, and mean increasing rates of ground temperature were also greater beneath the lake than around the lake. Ground temperature differences between the lake bottom and natural ground surface are important for understanding ground thermal patterns beneath and around thermokarst lakes.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":\"32 1\",\"pages\":\"618 - 626\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ppp.2107\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2107\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2107","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A 10‐yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai–Tibet Plateau, China
Thermokarst lakes are distributed widely in permafrost regions on the Qinghai–Tibet Plateau (QTP), China. Better knowledge of ground thermal variability beneath and around thermokarst lakes is important for understanding future landscape development and hydrological changes. At a typical undisturbed small, shallow, alpine thermokarst lake in the Beiluhe Basin on the QTP, ground temperatures beneath and adjacent to the lake were monitored at four locations with maximum 30 m depth from the lake center to natural ground. The lake is elliptical with an area of ~700 m2 and maximum water depth of 0.6 m. Permafrost was present beneath and adjacent to the lake during the monitoring period. However, supra‐taliks were present above the permafrost table beneath the lake before monitoring of ground temperature began, but were absent around the lake. The supra‐permafrost taliks beneath the lake have thickened over time. The difference in mean permafrost table depth between the lake center and natural ground reached 5.14 m, and permafrost table depths increased beneath the lake, but changed indistinctively around the lake. Mean annual ground temperatures at different depths (5, 10, 20 and 30 m) were higher beneath the lake than around the lake, and mean increasing rates of ground temperature were also greater beneath the lake than around the lake. Ground temperature differences between the lake bottom and natural ground surface are important for understanding ground thermal patterns beneath and around thermokarst lakes.
期刊介绍:
Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.