Galang P. N. Hakim, Mohamed Hadi Habaebi, Elfatih A. A. Elsheikh, Fakhereldin M. Suliman, Md. Rafiqul Islam, Siti Hajar Binti Yusoff, Erry Yulian T. Adesta, Rabeya Anzum
{"title":"无线传感器网络中自组织网络实现的Levenberg Marquardt人工神经网络模型","authors":"Galang P. N. Hakim, Mohamed Hadi Habaebi, Elfatih A. A. Elsheikh, Fakhereldin M. Suliman, Md. Rafiqul Islam, Siti Hajar Binti Yusoff, Erry Yulian T. Adesta, Rabeya Anzum","doi":"10.1049/wss2.12052","DOIUrl":null,"url":null,"abstract":"<p>The Wireless Sensor Network needs to become a dynamic and adaptive network to conserve energy stored in the wireless sensor network node battery. This dynamic and adaptive network sometimes are called SON (Self Organizing Network). Several SON concepts have been developed such as routing, clustering, intrusion detection, and other. Although several SON concepts already exist, however, there is no concept for SON in dynamic radio configuration. Therefore, the authors’ contribution to this field would be proposing a dynamic and adaptive Wireless Sensor Network node radio configuration. The significance of their work lies in the modelling of the SON network that builds based on our measurement in the real-world jungle environment. The authors propose input parameters such as SNR, the distance between the transmitter and receiver, and frequency as the static parameter. For adaptive parameters, we propose bandwidth, spreading factor, and its most important parameter such as power for data transmission. Using the Levenberg Marquardt Artificial Neural Network (LM-ANN) self-organise Network model, power reduction and optimisation from 20 dBm to 14.9 dBm for SNR 3, to 11.5 dBm for SNR 6, and to 12.9 dBm for SNR 9 all within a 100-m range can be achieved. With this result, the authors conclude that we can use LM-ANN for the wireless sensor network SON model in the jungle environment.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12052","citationCount":"0","resultStr":"{\"title\":\"Levenberg Marquardt artificial neural network model for self-organising networks implementation in wireless sensor network\",\"authors\":\"Galang P. N. Hakim, Mohamed Hadi Habaebi, Elfatih A. A. Elsheikh, Fakhereldin M. Suliman, Md. Rafiqul Islam, Siti Hajar Binti Yusoff, Erry Yulian T. Adesta, Rabeya Anzum\",\"doi\":\"10.1049/wss2.12052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Wireless Sensor Network needs to become a dynamic and adaptive network to conserve energy stored in the wireless sensor network node battery. This dynamic and adaptive network sometimes are called SON (Self Organizing Network). Several SON concepts have been developed such as routing, clustering, intrusion detection, and other. Although several SON concepts already exist, however, there is no concept for SON in dynamic radio configuration. Therefore, the authors’ contribution to this field would be proposing a dynamic and adaptive Wireless Sensor Network node radio configuration. The significance of their work lies in the modelling of the SON network that builds based on our measurement in the real-world jungle environment. The authors propose input parameters such as SNR, the distance between the transmitter and receiver, and frequency as the static parameter. For adaptive parameters, we propose bandwidth, spreading factor, and its most important parameter such as power for data transmission. Using the Levenberg Marquardt Artificial Neural Network (LM-ANN) self-organise Network model, power reduction and optimisation from 20 dBm to 14.9 dBm for SNR 3, to 11.5 dBm for SNR 6, and to 12.9 dBm for SNR 9 all within a 100-m range can be achieved. With this result, the authors conclude that we can use LM-ANN for the wireless sensor network SON model in the jungle environment.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Levenberg Marquardt artificial neural network model for self-organising networks implementation in wireless sensor network
The Wireless Sensor Network needs to become a dynamic and adaptive network to conserve energy stored in the wireless sensor network node battery. This dynamic and adaptive network sometimes are called SON (Self Organizing Network). Several SON concepts have been developed such as routing, clustering, intrusion detection, and other. Although several SON concepts already exist, however, there is no concept for SON in dynamic radio configuration. Therefore, the authors’ contribution to this field would be proposing a dynamic and adaptive Wireless Sensor Network node radio configuration. The significance of their work lies in the modelling of the SON network that builds based on our measurement in the real-world jungle environment. The authors propose input parameters such as SNR, the distance between the transmitter and receiver, and frequency as the static parameter. For adaptive parameters, we propose bandwidth, spreading factor, and its most important parameter such as power for data transmission. Using the Levenberg Marquardt Artificial Neural Network (LM-ANN) self-organise Network model, power reduction and optimisation from 20 dBm to 14.9 dBm for SNR 3, to 11.5 dBm for SNR 6, and to 12.9 dBm for SNR 9 all within a 100-m range can be achieved. With this result, the authors conclude that we can use LM-ANN for the wireless sensor network SON model in the jungle environment.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.