{"title":"低能中微子散射物理学的最新进展及其对标准和超越标准模型物理学的意义","authors":"Vishvas Pandey","doi":"10.1016/j.ppnp.2023.104078","DOIUrl":null,"url":null,"abstract":"<div><p><span>Neutrinos continue to provide a testing ground for the structure of the standard model of </span>particle physics<span> as well as hints towards the physics beyond the standard model<span><span>. Neutrinos of energies spanning over several orders of magnitude, originating in many terrestrial and astrophysical processes, have been detected via various decay and interaction mechanisms. At MeV scales, there has been one elusive process, until a few years ago, known as coherent elastic neutrino-nucleus scattering (CEvNS) that was theoretically predicted over five decades ago but was never observed experimentally. The recent experimental observation of the CEvNS process by the COHERENT collaboration at a stopped pion neutrino source has inspired physicists across many subfields. This new way of detecting neutrinos has vital implications for nuclear </span>physics, high-energy physics, astrophysics, and beyond. CEvNS, being a low-energy process, provides a natural window to study light, weakly-coupled, new physics in the neutrino sector. Leveraging orders of magnitude higher CEvNS cross section, new physics can be searched with relatively small detectors.</span></span></p><p><span>In this review, we intend to provide the current status of low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics. We discuss low energy sources of neutrinos with a focus on neutrinos from the stopped pions. Stopped pion sources cover energies in the tens of MeVs and are almost optimal for studying CEvNS. Several worldwide experimental programs have been or are being set up to detect CEvNS and new physics signals in the near future with complementary detection technologies and physics goals. We discuss the general formalism of calculating the tree-level CEvNS cross section and the estimated theoretical uncertainties on the CEvNS cross section stemming from different sources. We also discuss the inelastic scattering of tens of MeV neutrinos that have implications for </span>supernova<span> detection in future neutrino experiments. The stopped-pion facilities are also a near-ideal tens of MeV neutrino source to study inelastic neutrino-nucleus cross sections. We discuss how the CEvNS experiments can be used as a testing ground for the Standard Model (SM) weak physics as well as in searching for the Beyond the Standard Model (BSM) physics signals. Any deviation from the SM predicted event rate either with a change in the total event rate or with a change in the shape of the recoil spectrum, could indicate new contributions to the interaction cross-section. The SM implications include the study of weak nuclear form factor and weak mixing angle. The BSM studies include non-standard interactions, neutrino electromagnetic properties, and sterile neutrino searches. Stopped pion facilities are also a copious source of neutral and changed mesons that allow study of several dark sector physics scenarios such as vector portal models, leptophobic dark matter as well as axion-like particle searches.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"134 ","pages":"Article 104078"},"PeriodicalIF":14.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics\",\"authors\":\"Vishvas Pandey\",\"doi\":\"10.1016/j.ppnp.2023.104078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Neutrinos continue to provide a testing ground for the structure of the standard model of </span>particle physics<span> as well as hints towards the physics beyond the standard model<span><span>. Neutrinos of energies spanning over several orders of magnitude, originating in many terrestrial and astrophysical processes, have been detected via various decay and interaction mechanisms. At MeV scales, there has been one elusive process, until a few years ago, known as coherent elastic neutrino-nucleus scattering (CEvNS) that was theoretically predicted over five decades ago but was never observed experimentally. The recent experimental observation of the CEvNS process by the COHERENT collaboration at a stopped pion neutrino source has inspired physicists across many subfields. This new way of detecting neutrinos has vital implications for nuclear </span>physics, high-energy physics, astrophysics, and beyond. CEvNS, being a low-energy process, provides a natural window to study light, weakly-coupled, new physics in the neutrino sector. Leveraging orders of magnitude higher CEvNS cross section, new physics can be searched with relatively small detectors.</span></span></p><p><span>In this review, we intend to provide the current status of low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics. We discuss low energy sources of neutrinos with a focus on neutrinos from the stopped pions. Stopped pion sources cover energies in the tens of MeVs and are almost optimal for studying CEvNS. Several worldwide experimental programs have been or are being set up to detect CEvNS and new physics signals in the near future with complementary detection technologies and physics goals. We discuss the general formalism of calculating the tree-level CEvNS cross section and the estimated theoretical uncertainties on the CEvNS cross section stemming from different sources. We also discuss the inelastic scattering of tens of MeV neutrinos that have implications for </span>supernova<span> detection in future neutrino experiments. The stopped-pion facilities are also a near-ideal tens of MeV neutrino source to study inelastic neutrino-nucleus cross sections. We discuss how the CEvNS experiments can be used as a testing ground for the Standard Model (SM) weak physics as well as in searching for the Beyond the Standard Model (BSM) physics signals. Any deviation from the SM predicted event rate either with a change in the total event rate or with a change in the shape of the recoil spectrum, could indicate new contributions to the interaction cross-section. The SM implications include the study of weak nuclear form factor and weak mixing angle. The BSM studies include non-standard interactions, neutrino electromagnetic properties, and sterile neutrino searches. Stopped pion facilities are also a copious source of neutral and changed mesons that allow study of several dark sector physics scenarios such as vector portal models, leptophobic dark matter as well as axion-like particle searches.</span></p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"134 \",\"pages\":\"Article 104078\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641023000595\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641023000595","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Recent progress in low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics
Neutrinos continue to provide a testing ground for the structure of the standard model of particle physics as well as hints towards the physics beyond the standard model. Neutrinos of energies spanning over several orders of magnitude, originating in many terrestrial and astrophysical processes, have been detected via various decay and interaction mechanisms. At MeV scales, there has been one elusive process, until a few years ago, known as coherent elastic neutrino-nucleus scattering (CEvNS) that was theoretically predicted over five decades ago but was never observed experimentally. The recent experimental observation of the CEvNS process by the COHERENT collaboration at a stopped pion neutrino source has inspired physicists across many subfields. This new way of detecting neutrinos has vital implications for nuclear physics, high-energy physics, astrophysics, and beyond. CEvNS, being a low-energy process, provides a natural window to study light, weakly-coupled, new physics in the neutrino sector. Leveraging orders of magnitude higher CEvNS cross section, new physics can be searched with relatively small detectors.
In this review, we intend to provide the current status of low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics. We discuss low energy sources of neutrinos with a focus on neutrinos from the stopped pions. Stopped pion sources cover energies in the tens of MeVs and are almost optimal for studying CEvNS. Several worldwide experimental programs have been or are being set up to detect CEvNS and new physics signals in the near future with complementary detection technologies and physics goals. We discuss the general formalism of calculating the tree-level CEvNS cross section and the estimated theoretical uncertainties on the CEvNS cross section stemming from different sources. We also discuss the inelastic scattering of tens of MeV neutrinos that have implications for supernova detection in future neutrino experiments. The stopped-pion facilities are also a near-ideal tens of MeV neutrino source to study inelastic neutrino-nucleus cross sections. We discuss how the CEvNS experiments can be used as a testing ground for the Standard Model (SM) weak physics as well as in searching for the Beyond the Standard Model (BSM) physics signals. Any deviation from the SM predicted event rate either with a change in the total event rate or with a change in the shape of the recoil spectrum, could indicate new contributions to the interaction cross-section. The SM implications include the study of weak nuclear form factor and weak mixing angle. The BSM studies include non-standard interactions, neutrino electromagnetic properties, and sterile neutrino searches. Stopped pion facilities are also a copious source of neutral and changed mesons that allow study of several dark sector physics scenarios such as vector portal models, leptophobic dark matter as well as axion-like particle searches.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.