六变量多项式代数的生成方法及其应用

IF 1.4 4区 数学 Q1 MATHEMATICS
Nguyen Khac Tin
{"title":"六变量多项式代数的生成方法及其应用","authors":"Nguyen Khac Tin","doi":"10.37193/cjm.2023.02.13","DOIUrl":null,"url":null,"abstract":"\"Let $\\mathcal P_{n}:=H^{*}((\\mathbb{R}P^{\\infty})^{n}) \\cong \\mathbb Z_2[x_{1},x_{2},\\ldots,x_{n}]$ be the graded polynomial algebra over $\\mathcal K,$ where $\\mathcal K$ denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra $\\mathcal P_{n},$ viewed as a graded left module over the mod-$2$ Steenrod algebra, $\\mathcal{A}.$ For $n>4,$ this problem is still unsolved, even in the case of $n=5$ with the help of computers. In this paper, we study the hit problem for the case $n=6$ in degree $d_{k}=6(2^{k} -1)+9.2^{k},$ with $k$ an arbitrary non-negative integer. By considering $\\mathcal K$ as a trivial $\\mathcal A$-module, then the hit problem is equivalent to the problem of finding a basis of $\\mathcal K$-graded vector space $\\mathcal K {\\otimes}_{\\mathcal{A}}\\mathcal P_{n}.$ The main goal of the current paper is to explicitly determine an admissible monomial basis of the $\\mathcal K$-graded vector space $\\mathcal K{\\otimes}_{\\mathcal{A}}\\mathcal P_6$ in some degrees. At the same time, the behavior of the sixth Singer algebraic transfer in degree $d_{k}=6(2^{k} -1)+9.2^{k}$ is also discussed at the end of this article. Here, the Singer algebraic transfer is a homomorphism from the homology of the mod-$2$ Steenrod algebra, $\\mbox{Tor}^{\\mathcal{A}}_{n, n+d}(\\mathcal K, \\mathcal K),$ to the subspace of $\\mathcal K\\otimes_{\\mathcal{A}}\\mathcal P_{n}$ consisting of all the $GL_n$-invariant classes of degree $d.$\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on the generators of the polynomial algebra of six variables and application\",\"authors\":\"Nguyen Khac Tin\",\"doi\":\"10.37193/cjm.2023.02.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Let $\\\\mathcal P_{n}:=H^{*}((\\\\mathbb{R}P^{\\\\infty})^{n}) \\\\cong \\\\mathbb Z_2[x_{1},x_{2},\\\\ldots,x_{n}]$ be the graded polynomial algebra over $\\\\mathcal K,$ where $\\\\mathcal K$ denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra $\\\\mathcal P_{n},$ viewed as a graded left module over the mod-$2$ Steenrod algebra, $\\\\mathcal{A}.$ For $n>4,$ this problem is still unsolved, even in the case of $n=5$ with the help of computers. In this paper, we study the hit problem for the case $n=6$ in degree $d_{k}=6(2^{k} -1)+9.2^{k},$ with $k$ an arbitrary non-negative integer. By considering $\\\\mathcal K$ as a trivial $\\\\mathcal A$-module, then the hit problem is equivalent to the problem of finding a basis of $\\\\mathcal K$-graded vector space $\\\\mathcal K {\\\\otimes}_{\\\\mathcal{A}}\\\\mathcal P_{n}.$ The main goal of the current paper is to explicitly determine an admissible monomial basis of the $\\\\mathcal K$-graded vector space $\\\\mathcal K{\\\\otimes}_{\\\\mathcal{A}}\\\\mathcal P_6$ in some degrees. At the same time, the behavior of the sixth Singer algebraic transfer in degree $d_{k}=6(2^{k} -1)+9.2^{k}$ is also discussed at the end of this article. Here, the Singer algebraic transfer is a homomorphism from the homology of the mod-$2$ Steenrod algebra, $\\\\mbox{Tor}^{\\\\mathcal{A}}_{n, n+d}(\\\\mathcal K, \\\\mathcal K),$ to the subspace of $\\\\mathcal K\\\\otimes_{\\\\mathcal{A}}\\\\mathcal P_{n}$ consisting of all the $GL_n$-invariant classes of degree $d.$\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.02.13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.02.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

“设$\mathcal P_{n}:=H^{*}((\mathbb{R}P^{\infty})^{n})\cong\mathbb Z_2[x_{1},x_{2},\ldots,x_{n}]$是$\mathcal K上的分次多项式代数,其中$\mathical K$表示两个元素的素域。我们研究了多项式代数$\mathcal P_{n}的Peterson命中问题,$被视为模-$2$Steenrod代数上的一个分次左模,$\mathical{a}.$对于$n>4,$这个问题仍然没有解决,即使在计算机的帮助下$n=5$的情况下也是如此。在本文中,我们研究了$n=6$次$d_{k}=6(2^{k}-1)+9.2^{k},$的命中问题,$k$是任意的非负整数。通过将$\mathcal K$视为平凡的$\mathical a$-模,则hit问题等价于寻找$\mathcalK$-分次向量空间$\mathcal K{\otimes}_{\mathcal{a}}\mathcalP_{n}的基的问题。$本文的主要目标是在一定程度上显式地确定$\mathcal K$-分次向量空间$\mathical K{\otimes}_{\mathcal{A}}\mathical P_6$的一个可容许的单项基。同时,本文最后还讨论了阶$d_{k}=6(2^{k}-1)+9.2^{k}的第六次Singer代数转移的行为。这里,Singer代数转移是从模-$2$Stenrod代数$\mambox{Tor}^{\mathcal{a}}_{n,n+d}(\mathcal K,\mathcal K),$的同调到由所有$GL_n$阶不变类$d组成的$\mathcal K\otimes_{\math cal{a}}}\mathical P_{n}$的子空间的同态$“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the generators of the polynomial algebra of six variables and application
"Let $\mathcal P_{n}:=H^{*}((\mathbb{R}P^{\infty})^{n}) \cong \mathbb Z_2[x_{1},x_{2},\ldots,x_{n}]$ be the graded polynomial algebra over $\mathcal K,$ where $\mathcal K$ denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra $\mathcal P_{n},$ viewed as a graded left module over the mod-$2$ Steenrod algebra, $\mathcal{A}.$ For $n>4,$ this problem is still unsolved, even in the case of $n=5$ with the help of computers. In this paper, we study the hit problem for the case $n=6$ in degree $d_{k}=6(2^{k} -1)+9.2^{k},$ with $k$ an arbitrary non-negative integer. By considering $\mathcal K$ as a trivial $\mathcal A$-module, then the hit problem is equivalent to the problem of finding a basis of $\mathcal K$-graded vector space $\mathcal K {\otimes}_{\mathcal{A}}\mathcal P_{n}.$ The main goal of the current paper is to explicitly determine an admissible monomial basis of the $\mathcal K$-graded vector space $\mathcal K{\otimes}_{\mathcal{A}}\mathcal P_6$ in some degrees. At the same time, the behavior of the sixth Singer algebraic transfer in degree $d_{k}=6(2^{k} -1)+9.2^{k}$ is also discussed at the end of this article. Here, the Singer algebraic transfer is a homomorphism from the homology of the mod-$2$ Steenrod algebra, $\mbox{Tor}^{\mathcal{A}}_{n, n+d}(\mathcal K, \mathcal K),$ to the subspace of $\mathcal K\otimes_{\mathcal{A}}\mathcal P_{n}$ consisting of all the $GL_n$-invariant classes of degree $d.$"
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信