Abel Sepúlveda , Seyed Shahabaldin Seyed Salehi , Francesco De Luca , Martin Thalfeldt
{"title":"办公楼早期设计阶段平衡日光和热舒适性的基于太阳辐射的方法","authors":"Abel Sepúlveda , Seyed Shahabaldin Seyed Salehi , Francesco De Luca , Martin Thalfeldt","doi":"10.1016/j.foar.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>There is a lack of facade design methods for early design stages to balance thermal comfort and daylight provision that consider the obstruction angle as an independent variable without using modeling and simulations. This paper aims to develop easy-to use solar radiation-based prediction method for the design of office building facades (i.e., design parameters: room size, window-to-floor ratio, and glazing thermal/optical properties) located in urban canyons to balance daylight provision according to the European standard EN 17037:2018 and thermal comfort through specific cooling capacity. We used a simulation-based methodology that includes correlation analyses between building performance metrics and design parameters, the development of design workflows, accuracy analysis, and validation through the application of the workflows to a new development office building facades located in Tallinn, Estonia. The validation showed that the mean percentage of right/conservative predictions of thermal comfort classes is 98.8% whereas for daylight provision, it is higher than 75.6%. The use of the proposed prediction method can help designers to work more efficiently during early design stages and to obtain optimal performative solutions in much shorter time: window sizing in 73,152 room combinations in 80 s.</p></div>","PeriodicalId":51662,"journal":{"name":"Frontiers of Architectural Research","volume":"12 5","pages":"Pages 1030-1046"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solar radiation-based method for early design stages to balance daylight and thermal comfort in office buildings\",\"authors\":\"Abel Sepúlveda , Seyed Shahabaldin Seyed Salehi , Francesco De Luca , Martin Thalfeldt\",\"doi\":\"10.1016/j.foar.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a lack of facade design methods for early design stages to balance thermal comfort and daylight provision that consider the obstruction angle as an independent variable without using modeling and simulations. This paper aims to develop easy-to use solar radiation-based prediction method for the design of office building facades (i.e., design parameters: room size, window-to-floor ratio, and glazing thermal/optical properties) located in urban canyons to balance daylight provision according to the European standard EN 17037:2018 and thermal comfort through specific cooling capacity. We used a simulation-based methodology that includes correlation analyses between building performance metrics and design parameters, the development of design workflows, accuracy analysis, and validation through the application of the workflows to a new development office building facades located in Tallinn, Estonia. The validation showed that the mean percentage of right/conservative predictions of thermal comfort classes is 98.8% whereas for daylight provision, it is higher than 75.6%. The use of the proposed prediction method can help designers to work more efficiently during early design stages and to obtain optimal performative solutions in much shorter time: window sizing in 73,152 room combinations in 80 s.</p></div>\",\"PeriodicalId\":51662,\"journal\":{\"name\":\"Frontiers of Architectural Research\",\"volume\":\"12 5\",\"pages\":\"Pages 1030-1046\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Architectural Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095263523000572\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Architectural Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095263523000572","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
Solar radiation-based method for early design stages to balance daylight and thermal comfort in office buildings
There is a lack of facade design methods for early design stages to balance thermal comfort and daylight provision that consider the obstruction angle as an independent variable without using modeling and simulations. This paper aims to develop easy-to use solar radiation-based prediction method for the design of office building facades (i.e., design parameters: room size, window-to-floor ratio, and glazing thermal/optical properties) located in urban canyons to balance daylight provision according to the European standard EN 17037:2018 and thermal comfort through specific cooling capacity. We used a simulation-based methodology that includes correlation analyses between building performance metrics and design parameters, the development of design workflows, accuracy analysis, and validation through the application of the workflows to a new development office building facades located in Tallinn, Estonia. The validation showed that the mean percentage of right/conservative predictions of thermal comfort classes is 98.8% whereas for daylight provision, it is higher than 75.6%. The use of the proposed prediction method can help designers to work more efficiently during early design stages and to obtain optimal performative solutions in much shorter time: window sizing in 73,152 room combinations in 80 s.
期刊介绍:
Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering achievements in the field of architecture research. Subject areas include the primary branches of architecture, such as architectural design and theory, architectural science and technology, urban planning, landscaping architecture, existing building renovation, and architectural heritage conservation. The journal encourages studies based on a rigorous scientific approach and state-of-the-art technology. All published papers reflect original research works and basic theories, models, computing, and design in architecture. High-quality papers addressing the social aspects of architecture are also welcome. This journal is strictly peer-reviewed and accepts only original manuscripts submitted in English.