K. Liao, Qian Zhang, Yangyang Qiu, Yuxiang Zhu, Yang Liu, Hailong Huang, Deshui Chen, Bin Ma, Lin Zhang, Z. Ran, Xiaojun Yan, Jilin Xu
{"title":"磷脂酸对哺乳动物雷帕霉素靶蛋白及双壳类软体动物缢蛏代谢途径的影响","authors":"K. Liao, Qian Zhang, Yangyang Qiu, Yuxiang Zhu, Yang Liu, Hailong Huang, Deshui Chen, Bin Ma, Lin Zhang, Z. Ran, Xiaojun Yan, Jilin Xu","doi":"10.1155/2023/6666946","DOIUrl":null,"url":null,"abstract":"It is of great significance for bivalve aquaculture to promote the growth through nutritional strategy. Phosphatidic acid (PA) is a potential growth-promoting nutraceutical that targets for mammalian target of rapamycin (mTOR) in vertebrates, but its role in invertebrates remains largely unknown. Here, the effects of PA on mTOR and metabolic pathways in bivalve mollusk Sinonovacula constricta were determined by intramuscular injection with di-18 : 2 PA and di-16 : 0 PA. PA (both di-18 : 2 and di-16 : 0 PA) was found to increase the glycogen concentration in the muscle of S. constricta. Di-16 : 0 PA decreased the triglyceride concentration from 0.143 ± 0.04 mmol/g protein to 0.040 ± 0.018 mmol/g protein. The concentration of Asp, Glu, Ala, Cys, Val, Met, Ile, Leu, Phe, Arg, and Pro was reduced by di-18 : 2 PA or/and di-16 : 0 PA. PA increased the mRNA level of mTOR and the phosphorylation levels of eIF4E binding protein 1 and p70S6 kinase 1. Furthermore, PA decreased the protein level of microtubule-associated protein 1 light chain 3 Ⅱ/Ⅰ and the mRNA level of AMP-activated protein kinase. The mRNA expressions of two key enzymes of glycolysis (pyruvate kinase and glucokinase) were also upregulated by both PA, while the mRNA level of glucose transporter 1 was increased by di-18 : 2 PA. Di-16 : 0 PA decreased the mRNA level of phosphoenolpyruvate carboxykinase. The mRNA levels of sterol responsive element binding protein, fatty acid synthase, and acetyl-CoA carboxylase were increased by both PA. The mRNA level of stearoyl-CoA desaturase was increased by di-18 : 2 PA. Both PA species increased the mRNA levels of key enzymes involved in tricarboxylic acid cycle (citrate synthase and NADP-isocltrate debydrogenase). Our results indicated that PA activated mTOR signaling pathway, subsequently leading to the increase of anabolism and the inhibition of catabolism in S. constricta.","PeriodicalId":8104,"journal":{"name":"Aquaculture Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Phosphatidic Acid on Mammalian Target of Rapamycin (mTOR) and Metabolic Pathways in Bivalve Mollusk Sinonovacula constricta\",\"authors\":\"K. Liao, Qian Zhang, Yangyang Qiu, Yuxiang Zhu, Yang Liu, Hailong Huang, Deshui Chen, Bin Ma, Lin Zhang, Z. Ran, Xiaojun Yan, Jilin Xu\",\"doi\":\"10.1155/2023/6666946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is of great significance for bivalve aquaculture to promote the growth through nutritional strategy. Phosphatidic acid (PA) is a potential growth-promoting nutraceutical that targets for mammalian target of rapamycin (mTOR) in vertebrates, but its role in invertebrates remains largely unknown. Here, the effects of PA on mTOR and metabolic pathways in bivalve mollusk Sinonovacula constricta were determined by intramuscular injection with di-18 : 2 PA and di-16 : 0 PA. PA (both di-18 : 2 and di-16 : 0 PA) was found to increase the glycogen concentration in the muscle of S. constricta. Di-16 : 0 PA decreased the triglyceride concentration from 0.143 ± 0.04 mmol/g protein to 0.040 ± 0.018 mmol/g protein. The concentration of Asp, Glu, Ala, Cys, Val, Met, Ile, Leu, Phe, Arg, and Pro was reduced by di-18 : 2 PA or/and di-16 : 0 PA. PA increased the mRNA level of mTOR and the phosphorylation levels of eIF4E binding protein 1 and p70S6 kinase 1. Furthermore, PA decreased the protein level of microtubule-associated protein 1 light chain 3 Ⅱ/Ⅰ and the mRNA level of AMP-activated protein kinase. The mRNA expressions of two key enzymes of glycolysis (pyruvate kinase and glucokinase) were also upregulated by both PA, while the mRNA level of glucose transporter 1 was increased by di-18 : 2 PA. Di-16 : 0 PA decreased the mRNA level of phosphoenolpyruvate carboxykinase. The mRNA levels of sterol responsive element binding protein, fatty acid synthase, and acetyl-CoA carboxylase were increased by both PA. The mRNA level of stearoyl-CoA desaturase was increased by di-18 : 2 PA. Both PA species increased the mRNA levels of key enzymes involved in tricarboxylic acid cycle (citrate synthase and NADP-isocltrate debydrogenase). Our results indicated that PA activated mTOR signaling pathway, subsequently leading to the increase of anabolism and the inhibition of catabolism in S. constricta.\",\"PeriodicalId\":8104,\"journal\":{\"name\":\"Aquaculture Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6666946\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/2023/6666946","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Effects of Phosphatidic Acid on Mammalian Target of Rapamycin (mTOR) and Metabolic Pathways in Bivalve Mollusk Sinonovacula constricta
It is of great significance for bivalve aquaculture to promote the growth through nutritional strategy. Phosphatidic acid (PA) is a potential growth-promoting nutraceutical that targets for mammalian target of rapamycin (mTOR) in vertebrates, but its role in invertebrates remains largely unknown. Here, the effects of PA on mTOR and metabolic pathways in bivalve mollusk Sinonovacula constricta were determined by intramuscular injection with di-18 : 2 PA and di-16 : 0 PA. PA (both di-18 : 2 and di-16 : 0 PA) was found to increase the glycogen concentration in the muscle of S. constricta. Di-16 : 0 PA decreased the triglyceride concentration from 0.143 ± 0.04 mmol/g protein to 0.040 ± 0.018 mmol/g protein. The concentration of Asp, Glu, Ala, Cys, Val, Met, Ile, Leu, Phe, Arg, and Pro was reduced by di-18 : 2 PA or/and di-16 : 0 PA. PA increased the mRNA level of mTOR and the phosphorylation levels of eIF4E binding protein 1 and p70S6 kinase 1. Furthermore, PA decreased the protein level of microtubule-associated protein 1 light chain 3 Ⅱ/Ⅰ and the mRNA level of AMP-activated protein kinase. The mRNA expressions of two key enzymes of glycolysis (pyruvate kinase and glucokinase) were also upregulated by both PA, while the mRNA level of glucose transporter 1 was increased by di-18 : 2 PA. Di-16 : 0 PA decreased the mRNA level of phosphoenolpyruvate carboxykinase. The mRNA levels of sterol responsive element binding protein, fatty acid synthase, and acetyl-CoA carboxylase were increased by both PA. The mRNA level of stearoyl-CoA desaturase was increased by di-18 : 2 PA. Both PA species increased the mRNA levels of key enzymes involved in tricarboxylic acid cycle (citrate synthase and NADP-isocltrate debydrogenase). Our results indicated that PA activated mTOR signaling pathway, subsequently leading to the increase of anabolism and the inhibition of catabolism in S. constricta.
期刊介绍:
International in perspective, Aquaculture Research is published 12 times a year and specifically addresses research and reference needs of all working and studying within the many varied areas of aquaculture. The Journal regularly publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. It covers all aquatic organisms, floristic and faunistic, related directly or indirectly to human consumption. The journal also includes review articles, short communications and technical papers. Young scientists are particularly encouraged to submit short communications based on their own research.