吲哚菁绿j聚集体的光谱与结构特性的相关性

Q3 Medicine
D. Farrakhova, I. Romanishkin, D. Yakovlev, Yuliya Maklygina, V. Oleinikov, P. Fedotov, M. V. Kravchik, L. Bezdetnaya, V. Loschenov
{"title":"吲哚菁绿j聚集体的光谱与结构特性的相关性","authors":"D. Farrakhova, I. Romanishkin, D. Yakovlev, Yuliya Maklygina, V. Oleinikov, P. Fedotov, M. V. Kravchik, L. Bezdetnaya, V. Loschenov","doi":"10.24931/2413-9432-2022-11-3-4-16","DOIUrl":null,"url":null,"abstract":"Indocyanine green (ICG), when in free form in a liquid, can form stable nanoparticle structures or colloidal solution, while changing its spectroscopic properties. In the work, the aggregation degree and the average size of nanoparticles depending on the concentration of a colloidal solution of indocyanine green (ICG NPs) in the form of J-aggregates were investigated by various methods based on light scattering. The size of nanoparticles is an important parameter from the point of view of clinical application, because the technique of intravenous administration of drugs, in order to avoid microvascular thrombosis and embolism, provides dosage forms with inclusions of individual molecules or their clusters, not exceeding 500 nm diameter. In turn, small nanoparticles less than 30 nm lead to prolonged circulation of the drug in the body with an increased possibility of permeation into cells of healthy tissue. In the course of studies, it was found that an increase in the concentration of ICG NPs in the solution leads to an increase in the average size of spontaneously formed J-aggregates, which, in turn, leads to a decrease in the absorption coefficient in the aggregates. Presumably, this phenomenon, i.e. the established nonlinear dependence of the J-aggregate absorption on its size, can be explained by the formation of absorption centers on the J-aggregate surface in the form of mobile surface molecules. The threshold range of ICG molecule concentration was determined, at which there is a transition from aggregation with an increase in size with a slow addition of ICG J-aggregate molecules in height to a rapid addition in width.","PeriodicalId":37713,"journal":{"name":"Biomedical Photonics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation of spectroscopic and structural properties of indocyanine green j-aggregates\",\"authors\":\"D. Farrakhova, I. Romanishkin, D. Yakovlev, Yuliya Maklygina, V. Oleinikov, P. Fedotov, M. V. Kravchik, L. Bezdetnaya, V. Loschenov\",\"doi\":\"10.24931/2413-9432-2022-11-3-4-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indocyanine green (ICG), when in free form in a liquid, can form stable nanoparticle structures or colloidal solution, while changing its spectroscopic properties. In the work, the aggregation degree and the average size of nanoparticles depending on the concentration of a colloidal solution of indocyanine green (ICG NPs) in the form of J-aggregates were investigated by various methods based on light scattering. The size of nanoparticles is an important parameter from the point of view of clinical application, because the technique of intravenous administration of drugs, in order to avoid microvascular thrombosis and embolism, provides dosage forms with inclusions of individual molecules or their clusters, not exceeding 500 nm diameter. In turn, small nanoparticles less than 30 nm lead to prolonged circulation of the drug in the body with an increased possibility of permeation into cells of healthy tissue. In the course of studies, it was found that an increase in the concentration of ICG NPs in the solution leads to an increase in the average size of spontaneously formed J-aggregates, which, in turn, leads to a decrease in the absorption coefficient in the aggregates. Presumably, this phenomenon, i.e. the established nonlinear dependence of the J-aggregate absorption on its size, can be explained by the formation of absorption centers on the J-aggregate surface in the form of mobile surface molecules. The threshold range of ICG molecule concentration was determined, at which there is a transition from aggregation with an increase in size with a slow addition of ICG J-aggregate molecules in height to a rapid addition in width.\",\"PeriodicalId\":37713,\"journal\":{\"name\":\"Biomedical Photonics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24931/2413-9432-2022-11-3-4-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24931/2413-9432-2022-11-3-4-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

吲哚菁绿(ICG)在液体中以自由形态存在时,可以形成稳定的纳米颗粒结构或胶体溶液,同时改变其光谱性质。在本研究中,采用基于光散射的各种方法研究了不同浓度的吲哚菁绿胶体溶液(ICG NPs)的j聚集体形式的聚集程度和纳米颗粒的平均尺寸。从临床应用的角度来看,纳米颗粒的大小是一个重要的参数,因为静脉给药技术为了避免微血管血栓形成和栓塞,提供了直径不超过500纳米的单个分子或其簇的包涵体的剂型。反过来,小于30纳米的小纳米颗粒延长了药物在体内的循环,增加了渗透到健康组织细胞的可能性。在研究过程中发现,溶液中ICG NPs浓度的增加导致自发形成的j -聚集体的平均尺寸增加,从而导致聚集体的吸收系数降低。据推测,这种现象,即j -聚集体吸收与其大小的非线性依赖关系,可以用j -聚集体表面上以可移动表面分子的形式形成的吸收中心来解释。确定了ICG分子浓度的阈值范围,在此阈值范围内,ICG j -聚集体分子的高度缓慢增加,聚集大小增加,而宽度迅速增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation of spectroscopic and structural properties of indocyanine green j-aggregates
Indocyanine green (ICG), when in free form in a liquid, can form stable nanoparticle structures or colloidal solution, while changing its spectroscopic properties. In the work, the aggregation degree and the average size of nanoparticles depending on the concentration of a colloidal solution of indocyanine green (ICG NPs) in the form of J-aggregates were investigated by various methods based on light scattering. The size of nanoparticles is an important parameter from the point of view of clinical application, because the technique of intravenous administration of drugs, in order to avoid microvascular thrombosis and embolism, provides dosage forms with inclusions of individual molecules or their clusters, not exceeding 500 nm diameter. In turn, small nanoparticles less than 30 nm lead to prolonged circulation of the drug in the body with an increased possibility of permeation into cells of healthy tissue. In the course of studies, it was found that an increase in the concentration of ICG NPs in the solution leads to an increase in the average size of spontaneously formed J-aggregates, which, in turn, leads to a decrease in the absorption coefficient in the aggregates. Presumably, this phenomenon, i.e. the established nonlinear dependence of the J-aggregate absorption on its size, can be explained by the formation of absorption centers on the J-aggregate surface in the form of mobile surface molecules. The threshold range of ICG molecule concentration was determined, at which there is a transition from aggregation with an increase in size with a slow addition of ICG J-aggregate molecules in height to a rapid addition in width.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Photonics
Biomedical Photonics Medicine-Surgery
CiteScore
1.80
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: The main goal of the journal – to promote the development of Russian biomedical photonics and implementation of its advances into medical practice. The primary objectives: - Presentation of up-to-date results of scientific and in research and scientific and practical (clinical and experimental) activity in the field of biomedical photonics. - Development of united Russian media for integration of knowledge and experience of scientists and practitioners in this field. - Distribution of best practices in laser medicine to regions. - Keeping the clinicians informed about new methods and devices for laser medicine - Approval of investigations of Ph.D candidates and applicants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信