Santhanakrishnan Narayanan, Nikita Makarov, Evripidis Magkos, Josep Maria Salanova Grau, G. Aifadopoulou, C. Antoniou
{"title":"共享单车能减少亚历山德鲁波利斯的汽车使用量吗?通过比较离散选择和机器学习模型的探索","authors":"Santhanakrishnan Narayanan, Nikita Makarov, Evripidis Magkos, Josep Maria Salanova Grau, G. Aifadopoulou, C. Antoniou","doi":"10.3390/smartcities6030060","DOIUrl":null,"url":null,"abstract":"The implementation of bike-sharing systems (BSSs) is expected to lead to modifications in the travel habits of transport users, one of which is the choice of travel mode. Therefore, this research focuses on the identification of factors influencing the shift of private car users to BSSs based on stated preference survey data from the city of Alexandroupolis, Greece. A binary logit model is employed for this purpose. The estimation results indicate the impacts of gender, income, travel time, travel cost and safety-related aspects on the mode shift, through which behavioural insights are derived. For example, car users are found to be twice as sensitive to the cost of BSSs than to that of car. Similarly, they are highly sensitive to BSS travel time. Based on the behavioural findings, policy measures are suggested under the following categories: (i) finance, (ii) regulation, (iii) infrastructure, (iv) campaigns and (v) customer targeting. In addition, a secondary objective of this research is to obtain insights from the comparison of the specified logit model with a machine learning approach, as the latter is slowly gaining prominence in the field of transport. For the comparison, a random forest classifier is also developed. This comparison shows a coherence between the two approaches, although a discrepancy in the feature importance for gender and travel time is observed. A deeper exploration of this discrepancy highlights the hurdles that often occur when using mathematically more powerful models, such as the random forest classifier.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Can Bike-Sharing Reduce Car Use in Alexandroupolis? An Exploration through the Comparison of Discrete Choice and Machine Learning Models\",\"authors\":\"Santhanakrishnan Narayanan, Nikita Makarov, Evripidis Magkos, Josep Maria Salanova Grau, G. Aifadopoulou, C. Antoniou\",\"doi\":\"10.3390/smartcities6030060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of bike-sharing systems (BSSs) is expected to lead to modifications in the travel habits of transport users, one of which is the choice of travel mode. Therefore, this research focuses on the identification of factors influencing the shift of private car users to BSSs based on stated preference survey data from the city of Alexandroupolis, Greece. A binary logit model is employed for this purpose. The estimation results indicate the impacts of gender, income, travel time, travel cost and safety-related aspects on the mode shift, through which behavioural insights are derived. For example, car users are found to be twice as sensitive to the cost of BSSs than to that of car. Similarly, they are highly sensitive to BSS travel time. Based on the behavioural findings, policy measures are suggested under the following categories: (i) finance, (ii) regulation, (iii) infrastructure, (iv) campaigns and (v) customer targeting. In addition, a secondary objective of this research is to obtain insights from the comparison of the specified logit model with a machine learning approach, as the latter is slowly gaining prominence in the field of transport. For the comparison, a random forest classifier is also developed. This comparison shows a coherence between the two approaches, although a discrepancy in the feature importance for gender and travel time is observed. A deeper exploration of this discrepancy highlights the hurdles that often occur when using mathematically more powerful models, such as the random forest classifier.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6030060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Can Bike-Sharing Reduce Car Use in Alexandroupolis? An Exploration through the Comparison of Discrete Choice and Machine Learning Models
The implementation of bike-sharing systems (BSSs) is expected to lead to modifications in the travel habits of transport users, one of which is the choice of travel mode. Therefore, this research focuses on the identification of factors influencing the shift of private car users to BSSs based on stated preference survey data from the city of Alexandroupolis, Greece. A binary logit model is employed for this purpose. The estimation results indicate the impacts of gender, income, travel time, travel cost and safety-related aspects on the mode shift, through which behavioural insights are derived. For example, car users are found to be twice as sensitive to the cost of BSSs than to that of car. Similarly, they are highly sensitive to BSS travel time. Based on the behavioural findings, policy measures are suggested under the following categories: (i) finance, (ii) regulation, (iii) infrastructure, (iv) campaigns and (v) customer targeting. In addition, a secondary objective of this research is to obtain insights from the comparison of the specified logit model with a machine learning approach, as the latter is slowly gaining prominence in the field of transport. For the comparison, a random forest classifier is also developed. This comparison shows a coherence between the two approaches, although a discrepancy in the feature importance for gender and travel time is observed. A deeper exploration of this discrepancy highlights the hurdles that often occur when using mathematically more powerful models, such as the random forest classifier.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.