基于UVLM的仿生纳米转子研究

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Zhao Shanyong, Liu Zhen, Sun Yachuan, Dang Tianjiao, Li Shiqi
{"title":"基于UVLM的仿生纳米转子研究","authors":"Zhao Shanyong,&nbsp;Liu Zhen,&nbsp;Sun Yachuan,&nbsp;Dang Tianjiao,&nbsp;Li Shiqi","doi":"10.1049/bsbt.2019.0019","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Nano rotor is of great value in military and civilian applications. Due to its nano size, it works at an ultra-low Reynolds number and aerodynamic performance deteriorates dramatically. The bio-inspired nano rotor is carried out to improve the rotor propulsive performance. Unsteady vortex lattice method (UVLM) model is established fully considering the influence of induced drag and wake vortex distortion on aerodynamic forces. The aim is to quickly and accurately simulate the flow field around the bio-inspired nano rotor and to efficiently perform the aerodynamic calculation to optimise the design of the bio-inspired rotor. The rotor parameters and motion parameters such as aspect ratio, taper ratio and camber are studied using UVLM. It is found that the aerodynamic performance of the rotor increased with the aspect ratio. The quality factor changes parabolically with the taper ratio and camber, and there is an optimal value for the ratio and camber, respectively. The influences of pitching angle and frequency are investigated as well. Results show that the bio-inspired motion improves the propulsion performance of nano rotor.</p>\n </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/bsbt.2019.0019","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired nano rotor investigation based on UVLM\",\"authors\":\"Zhao Shanyong,&nbsp;Liu Zhen,&nbsp;Sun Yachuan,&nbsp;Dang Tianjiao,&nbsp;Li Shiqi\",\"doi\":\"10.1049/bsbt.2019.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Nano rotor is of great value in military and civilian applications. Due to its nano size, it works at an ultra-low Reynolds number and aerodynamic performance deteriorates dramatically. The bio-inspired nano rotor is carried out to improve the rotor propulsive performance. Unsteady vortex lattice method (UVLM) model is established fully considering the influence of induced drag and wake vortex distortion on aerodynamic forces. The aim is to quickly and accurately simulate the flow field around the bio-inspired nano rotor and to efficiently perform the aerodynamic calculation to optimise the design of the bio-inspired rotor. The rotor parameters and motion parameters such as aspect ratio, taper ratio and camber are studied using UVLM. It is found that the aerodynamic performance of the rotor increased with the aspect ratio. The quality factor changes parabolically with the taper ratio and camber, and there is an optimal value for the ratio and camber, respectively. The influences of pitching angle and frequency are investigated as well. Results show that the bio-inspired motion improves the propulsion performance of nano rotor.</p>\\n </div>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/bsbt.2019.0019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsbt.2019.0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsbt.2019.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米转子在军事和民用领域具有重要的应用价值。由于其纳米尺寸,它在超低雷诺数下工作,空气动力学性能急剧恶化。采用仿生纳米旋翼来提高旋翼的推进性能。建立了充分考虑诱导阻力和尾涡畸变对气动力影响的非定常涡格法(UVLM)模型。其目的是快速准确地模拟仿生纳米转子周围的流场,并有效地进行空气动力学计算,以优化仿生转子的设计。利用UVLM对转子参数和运动参数如纵横比、锥度比和弯度进行了研究。研究发现,转子的气动性能随纵横比的增大而增大。质量因子随锥度比和外倾角呈抛物线变化,并且锥度比和内倾角分别存在最优值。研究了俯仰角和频率的影响。结果表明,仿生运动提高了纳米转子的推进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bio-inspired nano rotor investigation based on UVLM

Bio-inspired nano rotor investigation based on UVLM

Nano rotor is of great value in military and civilian applications. Due to its nano size, it works at an ultra-low Reynolds number and aerodynamic performance deteriorates dramatically. The bio-inspired nano rotor is carried out to improve the rotor propulsive performance. Unsteady vortex lattice method (UVLM) model is established fully considering the influence of induced drag and wake vortex distortion on aerodynamic forces. The aim is to quickly and accurately simulate the flow field around the bio-inspired nano rotor and to efficiently perform the aerodynamic calculation to optimise the design of the bio-inspired rotor. The rotor parameters and motion parameters such as aspect ratio, taper ratio and camber are studied using UVLM. It is found that the aerodynamic performance of the rotor increased with the aspect ratio. The quality factor changes parabolically with the taper ratio and camber, and there is an optimal value for the ratio and camber, respectively. The influences of pitching angle and frequency are investigated as well. Results show that the bio-inspired motion improves the propulsion performance of nano rotor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信