干墙撞击时人头的动力学响应

M. Liebschner, L. Waite
{"title":"干墙撞击时人头的动力学响应","authors":"M. Liebschner, L. Waite","doi":"10.34107/yhpn9422.04136","DOIUrl":null,"url":null,"abstract":"Little experimental data has been reported on the biomechanics of head collisions with drywall sections. The dynamics of head collisions with rigid structures are well documented. However, impacts with compliant, composite structures are more difficult to analyze. The study objective was to correlate the severity of a head impact with damage to the drywall. A human head analog was instrumented with a tri-axial accelerometer and a uniaxial load cell was placed along the cervical spine axis. A randomized block design of drop height and head orientation was utilized. The test results indicated a primarily linear correlation between drop height and peak head acceleration, as well as correlation between drop height and the geometry of the indentation to the drywall. Head posture had little influence on wall damage, however, head extension resulted in a stiffer head-spine complex compared to a flexed posture. A two-factor ANOVA determined a statistically significant correlation between damage severity and impact velocity. The results obtained can be used by accident reconstructionists to approximate the impact severity of a head impacting drywall. The study data are limited to drywall sections of known, similar geometry, and does not apply to scenarios with a support beam directly beneath the drywall. Further studies are needed to investigate additional head postures.","PeriodicalId":75599,"journal":{"name":"Biomedical sciences instrumentation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DYNAMICS RESPONSE OF THE HUMAN HEAD DURING DRYWALL IMPACT\",\"authors\":\"M. Liebschner, L. Waite\",\"doi\":\"10.34107/yhpn9422.04136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Little experimental data has been reported on the biomechanics of head collisions with drywall sections. The dynamics of head collisions with rigid structures are well documented. However, impacts with compliant, composite structures are more difficult to analyze. The study objective was to correlate the severity of a head impact with damage to the drywall. A human head analog was instrumented with a tri-axial accelerometer and a uniaxial load cell was placed along the cervical spine axis. A randomized block design of drop height and head orientation was utilized. The test results indicated a primarily linear correlation between drop height and peak head acceleration, as well as correlation between drop height and the geometry of the indentation to the drywall. Head posture had little influence on wall damage, however, head extension resulted in a stiffer head-spine complex compared to a flexed posture. A two-factor ANOVA determined a statistically significant correlation between damage severity and impact velocity. The results obtained can be used by accident reconstructionists to approximate the impact severity of a head impacting drywall. The study data are limited to drywall sections of known, similar geometry, and does not apply to scenarios with a support beam directly beneath the drywall. Further studies are needed to investigate additional head postures.\",\"PeriodicalId\":75599,\"journal\":{\"name\":\"Biomedical sciences instrumentation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical sciences instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34107/yhpn9422.04136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical sciences instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34107/yhpn9422.04136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于头部与干墙截面碰撞的生物力学实验数据报道很少。头部与刚性结构碰撞的动力学有很好的文献记载。然而,柔顺复合结构的冲击更难以分析。研究的目的是将头部撞击的严重程度与石膏板的损伤联系起来。用一个三轴加速度计和一个单轴称重传感器沿颈椎轴放置一个模拟人头。采用跌落高度和头部方向的随机区组设计。试验结果表明,落差高度与峰值水头加速度之间,以及落差高度与石膏板压痕几何形状之间,主要存在线性相关关系。头部姿势对壁面损伤的影响很小,然而,与弯曲的姿势相比,头部伸展会导致更僵硬的头-脊柱复合体。双因素方差分析确定了损伤严重程度和冲击速度之间具有统计学意义的相关性。得到的结果可以被事故再现学家用来估计头部撞击干墙的严重程度。研究数据仅限于已知的、几何形状相似的干墙部分,并不适用于在干墙正下方有支撑梁的情况。需要进一步的研究来调查其他的头部姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DYNAMICS RESPONSE OF THE HUMAN HEAD DURING DRYWALL IMPACT
Little experimental data has been reported on the biomechanics of head collisions with drywall sections. The dynamics of head collisions with rigid structures are well documented. However, impacts with compliant, composite structures are more difficult to analyze. The study objective was to correlate the severity of a head impact with damage to the drywall. A human head analog was instrumented with a tri-axial accelerometer and a uniaxial load cell was placed along the cervical spine axis. A randomized block design of drop height and head orientation was utilized. The test results indicated a primarily linear correlation between drop height and peak head acceleration, as well as correlation between drop height and the geometry of the indentation to the drywall. Head posture had little influence on wall damage, however, head extension resulted in a stiffer head-spine complex compared to a flexed posture. A two-factor ANOVA determined a statistically significant correlation between damage severity and impact velocity. The results obtained can be used by accident reconstructionists to approximate the impact severity of a head impacting drywall. The study data are limited to drywall sections of known, similar geometry, and does not apply to scenarios with a support beam directly beneath the drywall. Further studies are needed to investigate additional head postures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信