基于统计数据的模糊逻辑包含系统设置算法

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. S. Golosovskiy, A. V. Bogomolov, D. S. Tobin
{"title":"基于统计数据的模糊逻辑包含系统设置算法","authors":"M. S. Golosovskiy,&nbsp;A. V. Bogomolov,&nbsp;D. S. Tobin","doi":"10.3103/S0005105523010028","DOIUrl":null,"url":null,"abstract":"<div><p>An original algorithm for tuning zero-order Sugeno-type fuzzy inference systems based on statistical data is presented. The algorithm is based on selecting areas around the reference points, finding the coordinates of the center of mass of the selected areas, and using them to set up a fuzzy inference system. A convergence theorem is proven for the proposed algorithm. The paper presents the results of studying the quality of the algorithm under conditions of changing the number of membership functions of input variables and the number of statistical data points, on the basis of which the fuzzy inference systems were tuned.</p></div>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for Setting Fuzzy Logical Inclusion Systems Based on Statistical Data\",\"authors\":\"M. S. Golosovskiy,&nbsp;A. V. Bogomolov,&nbsp;D. S. Tobin\",\"doi\":\"10.3103/S0005105523010028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An original algorithm for tuning zero-order Sugeno-type fuzzy inference systems based on statistical data is presented. The algorithm is based on selecting areas around the reference points, finding the coordinates of the center of mass of the selected areas, and using them to set up a fuzzy inference system. A convergence theorem is proven for the proposed algorithm. The paper presents the results of studying the quality of the algorithm under conditions of changing the number of membership functions of input variables and the number of statistical data points, on the basis of which the fuzzy inference systems were tuned.</p></div>\",\"PeriodicalId\":42995,\"journal\":{\"name\":\"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0005105523010028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105523010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于统计数据的零阶Sugeno型模糊推理系统整定算法。该算法基于在参考点周围选择区域,找到所选区域的质心坐标,并利用它们建立模糊推理系统。证明了该算法的收敛性定理。本文给出了在改变输入变量隶属函数个数和统计数据点个数的条件下研究算法质量的结果,在此基础上对模糊推理系统进行了调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Algorithm for Setting Fuzzy Logical Inclusion Systems Based on Statistical Data

Algorithm for Setting Fuzzy Logical Inclusion Systems Based on Statistical Data

An original algorithm for tuning zero-order Sugeno-type fuzzy inference systems based on statistical data is presented. The algorithm is based on selecting areas around the reference points, finding the coordinates of the center of mass of the selected areas, and using them to set up a fuzzy inference system. A convergence theorem is proven for the proposed algorithm. The paper presents the results of studying the quality of the algorithm under conditions of changing the number of membership functions of input variables and the number of statistical data points, on the basis of which the fuzzy inference systems were tuned.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信