关于具有扇形算子的可容许惯性流形的存在性和正则性

Pub Date : 2022-03-09 DOI:10.1080/14689367.2022.2049706
Thieu Huy Nguyen, X. Bui
{"title":"关于具有扇形算子的可容许惯性流形的存在性和正则性","authors":"Thieu Huy Nguyen, X. Bui","doi":"10.1080/14689367.2022.2049706","DOIUrl":null,"url":null,"abstract":"Motivated by a predator–prey model with cross-diffusion, we consider the evolution equation of the form where the linear operator is a sectorial operator having a gap in its spectrum. We prove the existence of an admissibly inertial manifold for such an evolution equation in the case of the spectrum of contains an isolated subset which is sufficiently far from the rest, and the nonlinear term f satisfies φ-Lipschitz condition for φ belonging to some admissible space. Next, we will study the regularity of such admissibly inertial manifolds. We then apply the obtained result to the above-mentioned predator–prey model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and regularity of admissibly inertial manifolds with sectorial operators\",\"authors\":\"Thieu Huy Nguyen, X. Bui\",\"doi\":\"10.1080/14689367.2022.2049706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by a predator–prey model with cross-diffusion, we consider the evolution equation of the form where the linear operator is a sectorial operator having a gap in its spectrum. We prove the existence of an admissibly inertial manifold for such an evolution equation in the case of the spectrum of contains an isolated subset which is sufficiently far from the rest, and the nonlinear term f satisfies φ-Lipschitz condition for φ belonging to some admissible space. Next, we will study the regularity of such admissibly inertial manifolds. We then apply the obtained result to the above-mentioned predator–prey model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2049706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2049706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有交叉扩散的捕食者-猎物模型的激励下,我们考虑了线性算子是谱中有间隙的扇形算子形式的进化方程。我们证明了这样一个演化方程的可容许惯性流形的存在性,在的谱包含一个离其余子集足够远的孤立子集的情况下,并且非线性项f满足φ-Lipschitz条件,φ属于某个可容许空间。接下来,我们将研究这种可容许惯性流形的正则性。然后,我们将获得的结果应用于上述捕食者-猎物模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the existence and regularity of admissibly inertial manifolds with sectorial operators
Motivated by a predator–prey model with cross-diffusion, we consider the evolution equation of the form where the linear operator is a sectorial operator having a gap in its spectrum. We prove the existence of an admissibly inertial manifold for such an evolution equation in the case of the spectrum of contains an isolated subset which is sufficiently far from the rest, and the nonlinear term f satisfies φ-Lipschitz condition for φ belonging to some admissible space. Next, we will study the regularity of such admissibly inertial manifolds. We then apply the obtained result to the above-mentioned predator–prey model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信