基于贝叶斯推理引擎的密度估计

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
M. P. Wand, J. C. F. Yu
{"title":"基于贝叶斯推理引擎的密度估计","authors":"M. P. Wand,&nbsp;J. C. F. Yu","doi":"10.1007/s10182-021-00422-8","DOIUrl":null,"url":null,"abstract":"<div><p>We explain how effective automatic probability density function estimates can be constructed using contemporary Bayesian inference engines such as those based on no-U-turn sampling and expectation propagation. Extensive simulation studies demonstrate that the proposed density estimates have excellent comparative performance and scale well to very large sample sizes due to a binning strategy. Moreover, the approach is fully Bayesian and all estimates are accompanied by point-wise credible intervals. An accompanying package in the <span>R</span> language facilitates easy use of the new density estimates.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"106 2","pages":"199 - 216"},"PeriodicalIF":1.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density estimation via Bayesian inference engines\",\"authors\":\"M. P. Wand,&nbsp;J. C. F. Yu\",\"doi\":\"10.1007/s10182-021-00422-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explain how effective automatic probability density function estimates can be constructed using contemporary Bayesian inference engines such as those based on no-U-turn sampling and expectation propagation. Extensive simulation studies demonstrate that the proposed density estimates have excellent comparative performance and scale well to very large sample sizes due to a binning strategy. Moreover, the approach is fully Bayesian and all estimates are accompanied by point-wise credible intervals. An accompanying package in the <span>R</span> language facilitates easy use of the new density estimates.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"106 2\",\"pages\":\"199 - 216\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-021-00422-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-021-00422-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们解释了如何使用现代贝叶斯推理引擎(如基于无掉头采样和期望传播的贝叶斯推理引擎)构建有效的自动概率密度函数估计。大量的模拟研究表明,所提出的密度估计具有优异的比较性能,并且由于分箱策略,可以很好地扩展到非常大的样本量。此外,该方法是完全贝叶斯的,所有估计都伴随着逐点可信区间。附带的R语言包便于使用新的密度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Density estimation via Bayesian inference engines

Density estimation via Bayesian inference engines

We explain how effective automatic probability density function estimates can be constructed using contemporary Bayesian inference engines such as those based on no-U-turn sampling and expectation propagation. Extensive simulation studies demonstrate that the proposed density estimates have excellent comparative performance and scale well to very large sample sizes due to a binning strategy. Moreover, the approach is fully Bayesian and all estimates are accompanied by point-wise credible intervals. An accompanying package in the R language facilitates easy use of the new density estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信