{"title":"快速磁化率测量作为示踪剂,利用耕作均质化和简单比例模型评估侵蚀-沉积过程:以摩洛哥北部为例研究","authors":"Abdessalam Ouallali , Naima Bouhsane , Saidati Bouhlassa , Mohamed Moukhchane , Shamsollah Ayoubi , Habiba Aassoumi","doi":"10.1016/j.ijsrc.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>Soil erosion<span><span> is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as </span>magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (</span></span><em>χ</em><sub>lf</sub>) and high (<em>χ</em><sub>hf</sub>) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that <em>χ</em><sub>lf</sub><span><span> is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic </span>mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.</span></p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"38 5","pages":"Pages 739-753"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid magnetic susceptibility measurement as a tracer to assess the erosion–deposition process using tillage homogenization and simple proportional models: A case study in northern of Morocco\",\"authors\":\"Abdessalam Ouallali , Naima Bouhsane , Saidati Bouhlassa , Mohamed Moukhchane , Shamsollah Ayoubi , Habiba Aassoumi\",\"doi\":\"10.1016/j.ijsrc.2023.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Soil erosion<span><span> is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as </span>magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (</span></span><em>χ</em><sub>lf</sub>) and high (<em>χ</em><sub>hf</sub>) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that <em>χ</em><sub>lf</sub><span><span> is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic </span>mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.</span></p></div>\",\"PeriodicalId\":50290,\"journal\":{\"name\":\"International Journal of Sediment Research\",\"volume\":\"38 5\",\"pages\":\"Pages 739-753\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sediment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001627923000367\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627923000367","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Rapid magnetic susceptibility measurement as a tracer to assess the erosion–deposition process using tillage homogenization and simple proportional models: A case study in northern of Morocco
Soil erosion is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (χlf) and high (χhf) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that χlf is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.