广义Lotka-Volterra系统中的二维异宿连接

Pub Date : 2023-01-02 DOI:10.1080/14689367.2022.2162371
O. Podvigina
{"title":"广义Lotka-Volterra系统中的二维异宿连接","authors":"O. Podvigina","doi":"10.1080/14689367.2022.2162371","DOIUrl":null,"url":null,"abstract":"We consider a three-dimensional generalized Lotka–Volterra (GLV) system assuming that it has equilibria on each of the coordinate axes, stable along the respective directions, and heteroclinic trajectories, and , that belong to coordinate planes. For such a system we give a complete classification of possible types of dynamics, characterized by the existence or non-existence of various two-dimensional heteroclinic connections. For each of these classes, we derive inequalities satisfied by coefficients of the system. The results can be used for the construction of GLV systems possessing various heteroclinic cycles or networks.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-dimensional heteroclinic connections in the generalized Lotka–Volterra system\",\"authors\":\"O. Podvigina\",\"doi\":\"10.1080/14689367.2022.2162371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a three-dimensional generalized Lotka–Volterra (GLV) system assuming that it has equilibria on each of the coordinate axes, stable along the respective directions, and heteroclinic trajectories, and , that belong to coordinate planes. For such a system we give a complete classification of possible types of dynamics, characterized by the existence or non-existence of various two-dimensional heteroclinic connections. For each of these classes, we derive inequalities satisfied by coefficients of the system. The results can be used for the construction of GLV systems possessing various heteroclinic cycles or networks.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2162371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2162371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个三维广义Lotka-Volterra (GLV)系统,假设它在每个坐标轴上都有平衡,沿各自方向稳定,并且属于坐标平面的异斜轨迹。对于这样一个系统,我们给出了以存在或不存在各种二维异斜连接为特征的可能动力学类型的完整分类。对于每一类,我们推导出由系统系数满足的不等式。该结果可用于构建具有各种异斜环或网络的GLV系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Two-dimensional heteroclinic connections in the generalized Lotka–Volterra system
We consider a three-dimensional generalized Lotka–Volterra (GLV) system assuming that it has equilibria on each of the coordinate axes, stable along the respective directions, and heteroclinic trajectories, and , that belong to coordinate planes. For such a system we give a complete classification of possible types of dynamics, characterized by the existence or non-existence of various two-dimensional heteroclinic connections. For each of these classes, we derive inequalities satisfied by coefficients of the system. The results can be used for the construction of GLV systems possessing various heteroclinic cycles or networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信