利用Lie-Bcklund对称性求解(2+1)维Chaffee-Infante方程的呼吸波、解析解和守恒定律

IF 13 1区 工程技术 Q1 ENGINEERING, MARINE
Abdullahi Yusuf , Tukur Abdulkadir Sulaiman , Alrazi Abdeljabbar , Marwan Alquran
{"title":"利用Lie-Bcklund对称性求解(2+1)维Chaffee-Infante方程的呼吸波、解析解和守恒定律","authors":"Abdullahi Yusuf ,&nbsp;Tukur Abdulkadir Sulaiman ,&nbsp;Alrazi Abdeljabbar ,&nbsp;Marwan Alquran","doi":"10.1016/j.joes.2021.12.008","DOIUrl":null,"url":null,"abstract":"<div><p>The (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Chaffee–Infante has a wide range of applications in science and engineering, including nonlinear fiber optics, electromagnetic field waves, signal processing through optical fibers, plasma physics, coastal engineering, fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves. In this paper, this equation is investigated and analyzed using two effective schemes. The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration. The breather wave solutions are derived using the Cole–Hopf transformation. In addition, by means of new conservation theorem, we construct conservation laws (CLs) for the governing equation by means of Lie–Bäcklund symmetries. The novel characteristics for the (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 2","pages":"Pages 145-151"},"PeriodicalIF":13.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the (2+1)-dimensional Chaffee–Infante equation\",\"authors\":\"Abdullahi Yusuf ,&nbsp;Tukur Abdulkadir Sulaiman ,&nbsp;Alrazi Abdeljabbar ,&nbsp;Marwan Alquran\",\"doi\":\"10.1016/j.joes.2021.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Chaffee–Infante has a wide range of applications in science and engineering, including nonlinear fiber optics, electromagnetic field waves, signal processing through optical fibers, plasma physics, coastal engineering, fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves. In this paper, this equation is investigated and analyzed using two effective schemes. The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration. The breather wave solutions are derived using the Cole–Hopf transformation. In addition, by means of new conservation theorem, we construct conservation laws (CLs) for the governing equation by means of Lie–Bäcklund symmetries. The novel characteristics for the (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.</p></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"8 2\",\"pages\":\"Pages 145-151\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013321001418\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013321001418","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 18

摘要

(2+1)维Chaffee–Infante在科学和工程中有着广泛的应用,包括非线性光纤、电磁场、光纤信号处理、等离子体物理、海岸工程、流体动力学,尤其适用于等离子体和声波中的离子声波建模。本文用两种有效的格式对该方程进行了研究和分析。采用众所周知的tanh-coth和正弦余弦函数格式来建立所考虑方程的解析解。使用Cole–Hopf变换导出了呼吸波解。此外,利用新的守恒定理,利用李–Bäcklund对称性构造了控制方程的守恒定律。这项工作中获得的(2+1)维Chaffee–Infante方程的新特性在非线性科学和海洋工程中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the (2+1)-dimensional Chaffee–Infante equation

The (2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering, including nonlinear fiber optics, electromagnetic field waves, signal processing through optical fibers, plasma physics, coastal engineering, fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves. In this paper, this equation is investigated and analyzed using two effective schemes. The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration. The breather wave solutions are derived using the Cole–Hopf transformation. In addition, by means of new conservation theorem, we construct conservation laws (CLs) for the governing equation by means of Lie–Bäcklund symmetries. The novel characteristics for the (2+1)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
19.70%
发文量
224
审稿时长
29 days
期刊介绍: The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science. JOES encourages the submission of papers covering various aspects of ocean engineering and science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信