{"title":"非局部弹性和相位滞后对霍尔电流复合圆柱体中磁热弹性波的影响","authors":"R. Selvamani, S. Mahesh, F. Ebrahimi","doi":"10.13052/ejcm2642-2085.3223","DOIUrl":null,"url":null,"abstract":"In this study, the effect of nonlocal scale value and two phases lags on the free vibration of generalized magneto thermoelastic multilayered LEMV (Linear Elastic Material with Voids)/CFRP (Carbon Fiber Reinforced Polymer) composite cylinder is studied using nonlocal form of linear theory of elasticity. The governing equation of motion is established in longitudinal axis and variable separation model is used to transform the governing equations into a system of differential equations. To investigate vibration analysis from frequency equations, the stress free boundary conditions are adopted at the inner, outer and interface boundaries. The graphical representation of the numerically calculated results for frequency shift, natural frequency, and thermoelastic damping is presented. A special care has been taken to inspect the effect of nonlocal parameter on the aforementioned quantities. The results suggest that the nonlocal scale and the phase lag parameters alter the vibration characteristics of composite cylinders significantly.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Nonlocal Elasticity and Phase Lags on the Magneto Thermoelastic Waves in a Composite Cylinder with Hall Current\",\"authors\":\"R. Selvamani, S. Mahesh, F. Ebrahimi\",\"doi\":\"10.13052/ejcm2642-2085.3223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of nonlocal scale value and two phases lags on the free vibration of generalized magneto thermoelastic multilayered LEMV (Linear Elastic Material with Voids)/CFRP (Carbon Fiber Reinforced Polymer) composite cylinder is studied using nonlocal form of linear theory of elasticity. The governing equation of motion is established in longitudinal axis and variable separation model is used to transform the governing equations into a system of differential equations. To investigate vibration analysis from frequency equations, the stress free boundary conditions are adopted at the inner, outer and interface boundaries. The graphical representation of the numerically calculated results for frequency shift, natural frequency, and thermoelastic damping is presented. A special care has been taken to inspect the effect of nonlocal parameter on the aforementioned quantities. The results suggest that the nonlocal scale and the phase lag parameters alter the vibration characteristics of composite cylinders significantly.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.3223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Effect of Nonlocal Elasticity and Phase Lags on the Magneto Thermoelastic Waves in a Composite Cylinder with Hall Current
In this study, the effect of nonlocal scale value and two phases lags on the free vibration of generalized magneto thermoelastic multilayered LEMV (Linear Elastic Material with Voids)/CFRP (Carbon Fiber Reinforced Polymer) composite cylinder is studied using nonlocal form of linear theory of elasticity. The governing equation of motion is established in longitudinal axis and variable separation model is used to transform the governing equations into a system of differential equations. To investigate vibration analysis from frequency equations, the stress free boundary conditions are adopted at the inner, outer and interface boundaries. The graphical representation of the numerically calculated results for frequency shift, natural frequency, and thermoelastic damping is presented. A special care has been taken to inspect the effect of nonlocal parameter on the aforementioned quantities. The results suggest that the nonlocal scale and the phase lag parameters alter the vibration characteristics of composite cylinders significantly.