M. Shaheen, N. M. Mahmoud, M. A. Ali, M. Nasr, A. Hussein
{"title":"采用方形开环谐振器和t结合成器实现低插入损耗的高选择性微带双工器","authors":"M. Shaheen, N. M. Mahmoud, M. A. Ali, M. Nasr, A. Hussein","doi":"10.13164/re.2022.0357","DOIUrl":null,"url":null,"abstract":". In this paper, the design and hardware implementation of a squared open-loop resonator (SOLR)-based microstrip diplexer with high isolation, low insertion loss, and high selectivity are introduced. We employed four SOLRs, with each pair of coupled SOLRs used to build a high selectivity bandpass filter (BPF). To assemble the proposed diplexer, the designed BPFs are linked together via a T-junction combiner that is matched to the two filters and the antenna port. For transmit and receive modes, the proposed diplexer has two resonance frequencies of f t = 1.81 GHz and f r = 2.03 GHz, respectively achieving a small frequency space ratio of R = 0.114. The simulated structure exhibits good insertion losses of about 1.98 dB and 1.9 dB for the two channels, respectively, with fractional bandwidths of 2.25% at 1.81 GHz and 3% at 2.03 GHz. For 1.81 GHz and 2.03 GHz, the simulated isolation values are 58 dB and 46 dB, respectively. While the fabricated structure exhibits better insertion losses of about 1.25 dB and 1.22 dB at the measured transmit and receive frequencies of 1.801 GHz and 2.001 GHz, respectively, with smaller fractional bandwidths of 2.23% at 1.801 GHz and 2.98% at 2.001 GHz. For 1.801 GHz and 2.001 GHz, the measured isolation values are 48.99 dB and 57.02 dB, respectively.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of a Highly Selective Microstrip Diplexer with Low Insertion Loss Using Square Open-Loop Resonators and a T-Junction Combiner\",\"authors\":\"M. Shaheen, N. M. Mahmoud, M. A. Ali, M. Nasr, A. Hussein\",\"doi\":\"10.13164/re.2022.0357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, the design and hardware implementation of a squared open-loop resonator (SOLR)-based microstrip diplexer with high isolation, low insertion loss, and high selectivity are introduced. We employed four SOLRs, with each pair of coupled SOLRs used to build a high selectivity bandpass filter (BPF). To assemble the proposed diplexer, the designed BPFs are linked together via a T-junction combiner that is matched to the two filters and the antenna port. For transmit and receive modes, the proposed diplexer has two resonance frequencies of f t = 1.81 GHz and f r = 2.03 GHz, respectively achieving a small frequency space ratio of R = 0.114. The simulated structure exhibits good insertion losses of about 1.98 dB and 1.9 dB for the two channels, respectively, with fractional bandwidths of 2.25% at 1.81 GHz and 3% at 2.03 GHz. For 1.81 GHz and 2.03 GHz, the simulated isolation values are 58 dB and 46 dB, respectively. While the fabricated structure exhibits better insertion losses of about 1.25 dB and 1.22 dB at the measured transmit and receive frequencies of 1.801 GHz and 2.001 GHz, respectively, with smaller fractional bandwidths of 2.23% at 1.801 GHz and 2.98% at 2.001 GHz. For 1.801 GHz and 2.001 GHz, the measured isolation values are 48.99 dB and 57.02 dB, respectively.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0357\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0357","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Implementation of a Highly Selective Microstrip Diplexer with Low Insertion Loss Using Square Open-Loop Resonators and a T-Junction Combiner
. In this paper, the design and hardware implementation of a squared open-loop resonator (SOLR)-based microstrip diplexer with high isolation, low insertion loss, and high selectivity are introduced. We employed four SOLRs, with each pair of coupled SOLRs used to build a high selectivity bandpass filter (BPF). To assemble the proposed diplexer, the designed BPFs are linked together via a T-junction combiner that is matched to the two filters and the antenna port. For transmit and receive modes, the proposed diplexer has two resonance frequencies of f t = 1.81 GHz and f r = 2.03 GHz, respectively achieving a small frequency space ratio of R = 0.114. The simulated structure exhibits good insertion losses of about 1.98 dB and 1.9 dB for the two channels, respectively, with fractional bandwidths of 2.25% at 1.81 GHz and 3% at 2.03 GHz. For 1.81 GHz and 2.03 GHz, the simulated isolation values are 58 dB and 46 dB, respectively. While the fabricated structure exhibits better insertion losses of about 1.25 dB and 1.22 dB at the measured transmit and receive frequencies of 1.801 GHz and 2.001 GHz, respectively, with smaller fractional bandwidths of 2.23% at 1.801 GHz and 2.98% at 2.001 GHz. For 1.801 GHz and 2.001 GHz, the measured isolation values are 48.99 dB and 57.02 dB, respectively.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.