时间分数阶电报方程的稳定收敛杂化不连续伽辽金方法

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Sh. Baharlouei, R. Mokhtari
{"title":"时间分数阶电报方程的稳定收敛杂化不连续伽辽金方法","authors":"Sh. Baharlouei, R. Mokhtari","doi":"10.1080/01630563.2023.2236690","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we extend the application of the hybridized discontinuous Galerkin (HDG) method to solve time-fractional telegraph equations. In fact, we use an HDG method for space discretization and L1 and L2 finite difference schemes using non-uniform meshes for time discretization. Thanks to a special kind of discrete Gronwall inequality, we prove that the HDG method is unconditionally stable and it is convergent with the optimal spatial order of convergence. Two numerical experiments are tested to confirm the theoretical results.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"1175 - 1193"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stable and Convergent Hybridized Discontinuous Galerkin Method for Time-Fractional Telegraph Equations\",\"authors\":\"Sh. Baharlouei, R. Mokhtari\",\"doi\":\"10.1080/01630563.2023.2236690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we extend the application of the hybridized discontinuous Galerkin (HDG) method to solve time-fractional telegraph equations. In fact, we use an HDG method for space discretization and L1 and L2 finite difference schemes using non-uniform meshes for time discretization. Thanks to a special kind of discrete Gronwall inequality, we prove that the HDG method is unconditionally stable and it is convergent with the optimal spatial order of convergence. Two numerical experiments are tested to confirm the theoretical results.\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"44 1\",\"pages\":\"1175 - 1193\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2236690\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2236690","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文推广了杂交不连续伽辽金(HDG)方法在求解时间分数电报方程中的应用。事实上,我们使用HDG方法进行空间离散化,使用L1和L2有限差分格式使用非均匀网格进行时间离散化。由于一类特殊的离散Gronwall不等式,我们证明了HDG方法是无条件稳定的,并且它是以最优空间收敛阶收敛的。通过两个数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stable and Convergent Hybridized Discontinuous Galerkin Method for Time-Fractional Telegraph Equations
Abstract In this paper, we extend the application of the hybridized discontinuous Galerkin (HDG) method to solve time-fractional telegraph equations. In fact, we use an HDG method for space discretization and L1 and L2 finite difference schemes using non-uniform meshes for time discretization. Thanks to a special kind of discrete Gronwall inequality, we prove that the HDG method is unconditionally stable and it is convergent with the optimal spatial order of convergence. Two numerical experiments are tested to confirm the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信