{"title":"纳米颗粒和微颗粒冻干同种异体骨包被纳米纤维支架对人间充质干细胞形态、粘附和增殖的影响","authors":"Shabnam Aghayan, E. Seyedjafari, Shadi Hamidi","doi":"10.52547/ibj.26.3.193","DOIUrl":null,"url":null,"abstract":"Background: Freeze dried bone allograft nanoparticles on a nanofiber membrane may serve as an ideal scaffold for bone regeneration. This study aimed to assess the biological behavior of human MSCs in terms of proliferation and adhesion to nanoparticulate and microparticulate FDBA scaffolds on PLLA nanofiber membrane. Methods: In this experimental study, PLLA nanofiber scaffolds were synthesized by the electrospinning method. The FDBA nanoparticles were synthesized mechanically. The FDBA nanoparticles and microparticles were loaded on the surface of PLLA nanofiber membrane. A total of 64 scaffold samples in four groups of n-FDBA/PLLA, FDBA/PLLA, PLLA and control were placed in 24-well polystyrene tissue culture plates; 16 wells were allocated to each group. Data were analyzed using one-way ANOVA and Bonferroni test. Results: The proliferation rate of MSCs was significantly higher in the nanoparticulate group compared to the microparticulate group at five days (p = 0.034). Assessment of cell morphology at 24 hours revealed spindle-shaped cells with a higher number of appendages in the nanoparticulate group compared to other groups. Conclusion: MSCs on n-FDBA/PLLA scaffold were morphologically more active and flatter with a higher number of cellular appendages, as compared to FDBA/PLLA. It seems that the nanoparticulate scaffold is superior to the microparticulate scaffold in terms of proliferation, attachment, and morphology of MSCs in vitro.","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Nanofiber Scaffolds Coated with Nanoparticulate and Microparticulate Freeze Dried Bone Allograft on the Morphology, Adhesion, and Proliferation of Human Mesenchymal Stem Cells\",\"authors\":\"Shabnam Aghayan, E. Seyedjafari, Shadi Hamidi\",\"doi\":\"10.52547/ibj.26.3.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Freeze dried bone allograft nanoparticles on a nanofiber membrane may serve as an ideal scaffold for bone regeneration. This study aimed to assess the biological behavior of human MSCs in terms of proliferation and adhesion to nanoparticulate and microparticulate FDBA scaffolds on PLLA nanofiber membrane. Methods: In this experimental study, PLLA nanofiber scaffolds were synthesized by the electrospinning method. The FDBA nanoparticles were synthesized mechanically. The FDBA nanoparticles and microparticles were loaded on the surface of PLLA nanofiber membrane. A total of 64 scaffold samples in four groups of n-FDBA/PLLA, FDBA/PLLA, PLLA and control were placed in 24-well polystyrene tissue culture plates; 16 wells were allocated to each group. Data were analyzed using one-way ANOVA and Bonferroni test. Results: The proliferation rate of MSCs was significantly higher in the nanoparticulate group compared to the microparticulate group at five days (p = 0.034). Assessment of cell morphology at 24 hours revealed spindle-shaped cells with a higher number of appendages in the nanoparticulate group compared to other groups. Conclusion: MSCs on n-FDBA/PLLA scaffold were morphologically more active and flatter with a higher number of cellular appendages, as compared to FDBA/PLLA. It seems that the nanoparticulate scaffold is superior to the microparticulate scaffold in terms of proliferation, attachment, and morphology of MSCs in vitro.\",\"PeriodicalId\":14500,\"journal\":{\"name\":\"Iranian Biomedical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ibj.26.3.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ibj.26.3.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effects of Nanofiber Scaffolds Coated with Nanoparticulate and Microparticulate Freeze Dried Bone Allograft on the Morphology, Adhesion, and Proliferation of Human Mesenchymal Stem Cells
Background: Freeze dried bone allograft nanoparticles on a nanofiber membrane may serve as an ideal scaffold for bone regeneration. This study aimed to assess the biological behavior of human MSCs in terms of proliferation and adhesion to nanoparticulate and microparticulate FDBA scaffolds on PLLA nanofiber membrane. Methods: In this experimental study, PLLA nanofiber scaffolds were synthesized by the electrospinning method. The FDBA nanoparticles were synthesized mechanically. The FDBA nanoparticles and microparticles were loaded on the surface of PLLA nanofiber membrane. A total of 64 scaffold samples in four groups of n-FDBA/PLLA, FDBA/PLLA, PLLA and control were placed in 24-well polystyrene tissue culture plates; 16 wells were allocated to each group. Data were analyzed using one-way ANOVA and Bonferroni test. Results: The proliferation rate of MSCs was significantly higher in the nanoparticulate group compared to the microparticulate group at five days (p = 0.034). Assessment of cell morphology at 24 hours revealed spindle-shaped cells with a higher number of appendages in the nanoparticulate group compared to other groups. Conclusion: MSCs on n-FDBA/PLLA scaffold were morphologically more active and flatter with a higher number of cellular appendages, as compared to FDBA/PLLA. It seems that the nanoparticulate scaffold is superior to the microparticulate scaffold in terms of proliferation, attachment, and morphology of MSCs in vitro.