三种配置的多电池充电系统的可靠性和经济可行性比较

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sung-Jun Park, Yun-Gi Kwak, Sung-Geun Song, Feel-soon Kang
{"title":"三种配置的多电池充电系统的可靠性和经济可行性比较","authors":"Sung-Jun Park,&nbsp;Yun-Gi Kwak,&nbsp;Sung-Geun Song,&nbsp;Feel-soon Kang","doi":"10.1049/els2.12082","DOIUrl":null,"url":null,"abstract":"<p>Multiple battery charging systems can be configured with various combinations of ac-dc and dc-dc converters. This paper reviews the reliability and economy of three representative configurations of multi-battery charging systems. Existing PSA (part stress analysis) can analyse the failure rate considering the environmental factors for the type of parts, the number of parts, the connection state of parts and the voltage and current stress of parts. However, since it does not reflect the system's operating characteristics, the Fault-tree analysis (FTA) method based on the fault tree is used. Still, it cannot be analysed considering the operational risk of the converter according to various load conditions. Therefore, in this study, by defining a failure according to the minimum and maximum load of the multiple battery charging systems and designing a separate fault tree, the converter operation characteristics were considered by reflecting the number of battery charges, the characteristics according to SOC (state of charge) and the redundancy effect that appears when cyclic charging is applied. Through the new enhanced FTA method, the multiple battery charging systems (Type 1) to which sequential charging is applied are quantitatively proven advantageous in terms of reliability and economy.</p>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12082","citationCount":"0","resultStr":"{\"title\":\"Comparison of reliability and economic feasibility for the three configurations of multiple battery charging systems\",\"authors\":\"Sung-Jun Park,&nbsp;Yun-Gi Kwak,&nbsp;Sung-Geun Song,&nbsp;Feel-soon Kang\",\"doi\":\"10.1049/els2.12082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple battery charging systems can be configured with various combinations of ac-dc and dc-dc converters. This paper reviews the reliability and economy of three representative configurations of multi-battery charging systems. Existing PSA (part stress analysis) can analyse the failure rate considering the environmental factors for the type of parts, the number of parts, the connection state of parts and the voltage and current stress of parts. However, since it does not reflect the system's operating characteristics, the Fault-tree analysis (FTA) method based on the fault tree is used. Still, it cannot be analysed considering the operational risk of the converter according to various load conditions. Therefore, in this study, by defining a failure according to the minimum and maximum load of the multiple battery charging systems and designing a separate fault tree, the converter operation characteristics were considered by reflecting the number of battery charges, the characteristics according to SOC (state of charge) and the redundancy effect that appears when cyclic charging is applied. Through the new enhanced FTA method, the multiple battery charging systems (Type 1) to which sequential charging is applied are quantitatively proven advantageous in terms of reliability and economy.</p>\",\"PeriodicalId\":48518,\"journal\":{\"name\":\"IET Electrical Systems in Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12082\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Electrical Systems in Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12082\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多个电池充电系统可以配置各种组合的ac-dc和dc-dc转换器。本文综述了三种典型的多电池充电系统配置的可靠性和经济性。现有的PSA(零件应力分析)可以综合考虑零件的种类、数量、零件的连接状态以及零件的电压和电流应力等环境因素来分析故障率。但由于不能反映系统的运行特性,故采用基于故障树的故障树分析法(FTA)。但考虑到变流器在各种负荷条件下的运行风险,无法对其进行分析。因此,在本研究中,通过根据多个电池充电系统的最小和最大负载定义故障,并设计单独的故障树,通过反映电池充电次数,根据荷电状态(SOC)的特征以及循环充电时出现的冗余效应来考虑变流器的运行特性。通过新的增强型FTA方法,定量证明了采用顺序充电的多电池充电系统(类型1)在可靠性和经济性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of reliability and economic feasibility for the three configurations of multiple battery charging systems

Comparison of reliability and economic feasibility for the three configurations of multiple battery charging systems

Multiple battery charging systems can be configured with various combinations of ac-dc and dc-dc converters. This paper reviews the reliability and economy of three representative configurations of multi-battery charging systems. Existing PSA (part stress analysis) can analyse the failure rate considering the environmental factors for the type of parts, the number of parts, the connection state of parts and the voltage and current stress of parts. However, since it does not reflect the system's operating characteristics, the Fault-tree analysis (FTA) method based on the fault tree is used. Still, it cannot be analysed considering the operational risk of the converter according to various load conditions. Therefore, in this study, by defining a failure according to the minimum and maximum load of the multiple battery charging systems and designing a separate fault tree, the converter operation characteristics were considered by reflecting the number of battery charges, the characteristics according to SOC (state of charge) and the redundancy effect that appears when cyclic charging is applied. Through the new enhanced FTA method, the multiple battery charging systems (Type 1) to which sequential charging is applied are quantitatively proven advantageous in terms of reliability and economy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
4.30%
发文量
18
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信