Jintao Chen , Mingxia Liu , Yuxiang Zhu , Kairu Jin , Zhenyu Tian , Lijun Yang , Chong-Wen Zhou
{"title":"降冰片二烯氧化:h原子抽离及相关自由基分解反应的理论研究","authors":"Jintao Chen , Mingxia Liu , Yuxiang Zhu , Kairu Jin , Zhenyu Tian , Lijun Yang , Chong-Wen Zhou","doi":"10.1016/j.jppr.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The chemical kinetics of hydrogen atom (H-atom) abstraction reactions from norbornadiene (NBD) by five radicals (H, O(<sup>3</sup>P), OH, CH<sub>3</sub>, and HO<sub>2</sub>), and the unimolecular reactions of three NBD derived radicals, were studied through high-level ab-initio calculations. The geometries optimization and vibrational frequencies calculation for all the reactants, transition states, and products were obtained at the M06-2X/6-311++G(d,p) level of theory. The zero-point energy (ZPE) corrected potential energy surfaces (PESs) were determined at the QCISD(T)/cc-pVDZ, TZ level of theory with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods for single point energy calculations. Conventional transition state theory (TST) was used for the rate constants calculations of H-atom abstraction reactions by five radicals (H, O(<sup>3</sup>P), OH, CH<sub>3</sub>, and HO<sub>2</sub>) at temperatures from 298.15 to 2000 K, while the <em>α</em>-site H-atom abstraction reaction rate constant of NBD by OH radical has been obtained through variational transition state theory (VTST). The results show that the H-atom abstraction reactions from the <em>α</em>-carbon atom of NBD are the most critical channels at low temperatures. Total rate constants for H-atom abstraction reactions by OH radical are also the fastest among all of the reaction channels investigated at the temperature range from 298.15 to 2000 K. Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) has been used to calculate the pressure- and temperature-dependent rate constants for the unimolecular reactions of three related C<sub>7</sub>H<sub>7</sub> product radicals which generated from H-atom abstraction reaction within temperature ranges of 300–2000 K and pressures of 0.01–100 atm. A combination of composite methods has been used to calculate the temperature-dependent thermochemical properties of NBD and related radicals. All the calculated kinetics and thermochemistry data can be utilized in the model development for NBD oxidation.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 1","pages":"Pages 104-113"},"PeriodicalIF":5.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxidation of norbornadiene: Theoretical investigation on H-atom abstraction and related radical decomposition reactions\",\"authors\":\"Jintao Chen , Mingxia Liu , Yuxiang Zhu , Kairu Jin , Zhenyu Tian , Lijun Yang , Chong-Wen Zhou\",\"doi\":\"10.1016/j.jppr.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The chemical kinetics of hydrogen atom (H-atom) abstraction reactions from norbornadiene (NBD) by five radicals (H, O(<sup>3</sup>P), OH, CH<sub>3</sub>, and HO<sub>2</sub>), and the unimolecular reactions of three NBD derived radicals, were studied through high-level ab-initio calculations. The geometries optimization and vibrational frequencies calculation for all the reactants, transition states, and products were obtained at the M06-2X/6-311++G(d,p) level of theory. The zero-point energy (ZPE) corrected potential energy surfaces (PESs) were determined at the QCISD(T)/cc-pVDZ, TZ level of theory with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods for single point energy calculations. Conventional transition state theory (TST) was used for the rate constants calculations of H-atom abstraction reactions by five radicals (H, O(<sup>3</sup>P), OH, CH<sub>3</sub>, and HO<sub>2</sub>) at temperatures from 298.15 to 2000 K, while the <em>α</em>-site H-atom abstraction reaction rate constant of NBD by OH radical has been obtained through variational transition state theory (VTST). The results show that the H-atom abstraction reactions from the <em>α</em>-carbon atom of NBD are the most critical channels at low temperatures. Total rate constants for H-atom abstraction reactions by OH radical are also the fastest among all of the reaction channels investigated at the temperature range from 298.15 to 2000 K. Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) has been used to calculate the pressure- and temperature-dependent rate constants for the unimolecular reactions of three related C<sub>7</sub>H<sub>7</sub> product radicals which generated from H-atom abstraction reaction within temperature ranges of 300–2000 K and pressures of 0.01–100 atm. A combination of composite methods has been used to calculate the temperature-dependent thermochemical properties of NBD and related radicals. All the calculated kinetics and thermochemistry data can be utilized in the model development for NBD oxidation.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"12 1\",\"pages\":\"Pages 104-113\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X23000135\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000135","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Oxidation of norbornadiene: Theoretical investigation on H-atom abstraction and related radical decomposition reactions
The chemical kinetics of hydrogen atom (H-atom) abstraction reactions from norbornadiene (NBD) by five radicals (H, O(3P), OH, CH3, and HO2), and the unimolecular reactions of three NBD derived radicals, were studied through high-level ab-initio calculations. The geometries optimization and vibrational frequencies calculation for all the reactants, transition states, and products were obtained at the M06-2X/6-311++G(d,p) level of theory. The zero-point energy (ZPE) corrected potential energy surfaces (PESs) were determined at the QCISD(T)/cc-pVDZ, TZ level of theory with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods for single point energy calculations. Conventional transition state theory (TST) was used for the rate constants calculations of H-atom abstraction reactions by five radicals (H, O(3P), OH, CH3, and HO2) at temperatures from 298.15 to 2000 K, while the α-site H-atom abstraction reaction rate constant of NBD by OH radical has been obtained through variational transition state theory (VTST). The results show that the H-atom abstraction reactions from the α-carbon atom of NBD are the most critical channels at low temperatures. Total rate constants for H-atom abstraction reactions by OH radical are also the fastest among all of the reaction channels investigated at the temperature range from 298.15 to 2000 K. Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) has been used to calculate the pressure- and temperature-dependent rate constants for the unimolecular reactions of three related C7H7 product radicals which generated from H-atom abstraction reaction within temperature ranges of 300–2000 K and pressures of 0.01–100 atm. A combination of composite methods has been used to calculate the temperature-dependent thermochemical properties of NBD and related radicals. All the calculated kinetics and thermochemistry data can be utilized in the model development for NBD oxidation.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.